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ABSTRACT

Quaternary interglacial periods provide 
glimpses of a warmer Arctic and useful per-
spectives on possible future conditions, but 
records of Arctic terrestrial conditions over 
multiple interglacial periods are rare. Here, 
we take advantage of a site in the Canadian 
Arctic where lacustrine sediments represent-
ing the past three interglacial periods are 
preserved in an extant lake. We use subfos-
sil insects (chironomids) preserved in this 
exceptional sedimentary archive to derive 
temperature reconstructions through the 
Holocene up to A.D. 2005, through the Last 
Interglacial sensu stricto (marine isotope 
stage or MIS 5e), and a portion of the pen-
ultimate interglacial (MIS 7). Chironomid-
inferred temperatures are warmest for the 
early Holocene and MIS 5e, two periods with 
enhanced Northern Hemisphere insolation 
forcing relative to today. Twentieth-century 
warming at this site apparently caused the 
recent extirpation of cold stenothermous chi-
ronomid taxa. Assemblages from MIS 5e have 
close analogs in modern training set data as 
determined by squared-chord distance, and 
MIS 5e species assemblages are very similar 
to Holocene assemblages at this site. MIS 
7 sediments record summer temperatures 
similar to those of the mid- to late Holocene, 
followed by a descent into glacial conditions. 
Even MIS 7 chironomid assemblages, dating 
back ~200,000 yr, have close modern analogs. 
These lake sediments also provide direct evi-

dence for a period of regional deglaciation 
between MIS 5e and the Holocene (most 
likely MIS 5a). To our knowledge, the data 
presented here represent the longest paleo-
temperature record thus far generated using 
chironomids. The existence of close modern 
analogs for ancient chironomid assemblages 
at Lake CF8 suggests that this method can 
provide useful paleotemperature estimates 
extending back hundreds of millennia.

INTRODUCTION

Biological remains preserved in terrestrial 
and marine sediments have made major contri-
butions to our understanding of the Quaternary 
climate history of the Arctic. For example, the 
majority of existing proxy-based estimates of 
Arctic temperatures during the last intergla-
cial period (Last Interglacial sensu stricto, i.e., 
marine isotope stage [MIS] 5e, ca. 130–115 ka; 
ka = thousands of yr B.P.; Fig. 1) are derived 
from biological assemblages, including vegeta-
tion, insects, marine mollusks, and foraminifera 
(CAPE Last Interglacial Project Members, 
2006). Unfortunately, there are relatively few 
records from the Arctic that quantify tempera-
ture changes throughout MIS 5e (Berger and 
Anderson, 2000; Johnsen et al., 2001; NGRIP 
Project Members, 2004; CAPE Last Interglacial 
Project Members, 2006), and archives record-
ing changing terrestrial conditions throughout 
earlier interglacial periods in the Arctic are 
extremely rare (Lozhkin et al., 2007; Brigham-
Grette et al., 2007; de Vernal and Hillaire- 

Marcel, 2008; Brigham-Grette, 2009). Ice cores 
from Greenland provide invaluable continuous 
records of past climate and atmospheric com-
position, but the longest continuous ice-core 
records from the Northern Hemisphere extend 
only partway through MIS 5e (Johnsen et al., 
2001; NGRIP Project Members, 2004).

Recent work has demonstrated that lake 
sediment sequences representing multiple inter-
glacials have been preserved on Baffi n Island 
despite repeated overriding advances of the Lau-
rentide Ice Sheet (Briner et al., 2007), present-
ing a new opportunity for long-term terrestrial 
environmental reconstruction from a glaciated 
part of the Arctic. This discovery has allowed 
for the recovery of pre–Last Glacial Maxi-
mum (pre–MIS 2) sediments and correspond-
ing paleoecological records from several extant 
Baffi n Island lakes (Miller et al., 1999; Wolfe et 
al., 2000, 2004). The longest of these archives 
comes from Lake CF8, which contains sedi-
ments recording interglacial periods of at least 
the past 200,000 yr (Briner et al., 2007). A brief 
overview of major conclusions from the multi-
proxy 200,000 yr record has been presented pre-
viously (Axford et al., 2009a). Here, we present 
details of the 200,000 yr subfossil chironomid 
(nonbiting midge; Insecta: Diptera: Chironomi-
dae) record and chironomid-inferred paleotem-
perature reconstructions from Lake CF8.

STUDY SITE

Lake CF8 (z
max

 = 10 m; surface area = 0.3 km2; 
elevation = 195 m asl; 70°33.42′N, 68°57.12′W) 
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sits on the low-relief Clyde Foreland on north-
eastern Baffi n Island (Fig. 2) in Nunavut, Arctic 
Canada. Lake CF8 is a small through-fl owing 
lake fed primarily by summer snowmelt. There 
are no extant glaciers in the lake catchment. At 
the nearby village of Clyde River, modern mean 
annual temperature (for the period A.D. 1961–
1990) is −12.8 °C, and mean July temperature 
is +4.4 °C (Environment Canada, http://www.
climate.weatheroffi ce.gc.ca). Clyde River’s 
climate is mid-Arctic. Prostrate dwarf-shrub 
tundra vegetation surrounds the lake, which is 
generally ice covered for at least 9 mo each year 
(October–June). The local bedrock is Precam-
brian granite and gneiss.

Lake CF8 was overridden during the last 
glacial cycle by the Laurentide Ice Sheet, but 
previous work has demonstrated that this over-
riding ice was cold-based (i.e., frozen-bedded) 
and nonerosive (Briner et al., 2005, 2006a). In 
locations covered by cold-based ice during the 
last glaciation (Kleman and Hättestrand, 1999), 
little to no subglacial erosion took place, lead-
ing to the preservation of delicate features like 
fragile tors (Briner et al., 2003; Marquette et al., 
2004), perched boulders (Stroeven et al., 2002; 
Briner et al., 2005), and unconsolidated depo-
sitional landforms like beach ridges and deltas 
(Davis et al., 2006). Ice-marginal meltwater 
channels and scattered erratic boulders provide 

the only evidence of late Pleistocene ice-sheet 
advances around Lake CF8 (Fig. 2; Briner et al., 
2003, 2006a). The recovery of intact stratifi ed 
lacustrine sediments predating the Last Glacial 
Maximum from Lake CF8 has provided sup-
porting evidence for the nonerosive nature of 
overriding late Pleistocene ice (Briner et al., 
2007), as well as a new opportunity to recon-
struct Arctic paleoenvironments predating the 
Last Glacial Maximum.

Although pre-Holocene lake sediment records 
from the Canadian Arctic are rare, several such 
occurrences are known; their greatest density 
occurs along the east coast of Baffi n Island 
(Wolfe and Smith, 2004). Last Interglacial sedi-
ments from Fog and Brother of Fog Lakes on 
east-central Baffi n Island (Fig. 2) have been ana-
lyzed for pollen (Fréchette et al., 2006, 2008), 
diatoms (Wolfe et al., 2000), and chironomids 
(Francis et al., 2006). These lakes have yielded 
superposed sequences of Last Interglacial and 
Holocene age only; thus far, only Lake CF8 has 
yielded even older integlacial sediments.

MATERIALS AND METHODS

Core Stratigraphy and Geochronology

Briner et al. (2007) described the genesis, 
stratigraphy, and geochronology of Lake CF8 

sediments in detail, so only a general summary 
is provided here. Cores contain multiple strati-
fi ed organic lake mud units (gyttja) alternating 
with inorganic sand (Fig. 3) and penetrate to a 
total depth of 3.3 m below the sediment-water 
interface. Depth of penetration was limited by 
the stiffness of the oldest sediments, which are 
very dense (1.9 g cm–3), compact dewatered 
organic sediments. Preliminary geophysical 
surveys using ground-penetrating radar sug-
gest that there are older sediments yet to be 
recovered (G.S. Baker 2005, personal com-
mun.), but these have thus far eluded our cor-
ing technology.

Briner et al. (2007) assigned Roman numeral 
designations I–VII to each of the major 
lithostratigraphic units in the Lake CF8 stra-
tigraphy; we use the same designations here. 
Units I, III, V, and VII are gyttja; units II, IV, 
and VI are crudely stratifi ed sands. Gyttja units 
are brown to gray-brown in color, weakly strati-
fi ed to laminated, and contain varying concen-
trations of macrofossils (dominantly aquatic 
bryophytes). Sand units contain a range of grain 
sizes from fi ne to medium sand with occasional 
coarse sand lenses, granules, and pebbles, and 
they contain both lithic grains and a variety of 
minerals, including quartz, micas, and mafi c 
minerals, but no detectable organic material. As 
described by Briner et al. (2007), gyttja units are 
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Figure 1. Quaternary context of Lake CF8 stratigraphy, compared with climate indicators for the past 
450 ka: July insolation at 65°N (in Wm–2; Berger and Loutre, 1991); δD of ice from Dome C, Antarc-
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presumed to record lacustrine deposition during 
interglacial or interstadial conditions; interven-
ing periods of ice-sheet cover were character-
ized by nondeposition (i.e., hiatuses in the sedi-
ment stratigraphy), followed by the deposition 
of sand units in the lake during deglaciation. For 
the paleoecological study described here, we 
used portions of several different cores (Fig. 3) 
in order to work with the best preserved, most 
representative example of each gyttja unit. Sedi-
ment depths given herein are relative to the top 
of each individual core; therefore, in most cases, 
zero depth does not represent the sediment-
water interface.

Radiocarbon ages from the upper organic unit 
(Unit I) span the entire Holocene (Axford et al., 
2009b), and a 210Pb chronology has been estab-
lished for the uppermost sediments (Thomas et 
al., 2008). Ages have been assigned to the older 
stratigraphic units based upon radiocarbon and 
optically stimulated luminescence (OSL) dating 
of the organic lake-sediment units: Three dif-
ferent aquatic moss macrofossils from unit III 
all yielded nonfi nite radiocarbon ages, indicat-
ing this unit is older than ca. 48 ka. Based upon 
the radiocarbon and OSL results, Briner et al. 
(2007) assigned unit V to the Last Interglacial 
(MIS 5e) and unit VII to a portion of MIS 7, 

the prior interglacial period (Fig. 1). Organic 
unit III is assigned tentatively to MIS 5a, based 
upon its position above MIS 5e and below the 
Holocene sediments. Sand units are assumed 
to record clastic sediment transport to the lake 
via meltwater channels during deglaciation, and 
unconformities are assumed to be present below 
each sand layer (due to hiatus in deposition dur-
ing glacial periods; Briner et al., 2007).

Composition of Bulk Sediments

Qualitative proxies, including magnetic 
susceptibility, loss-on-ignition, and biogenic 
silica concentrations, were measured on bulk 
sediments to provide supplementary informa-
tion about changing sediment composition and 
paleoenvironments. Percent loss-on-ignition 
(%LOI), which is highly correlated with the total 
carbon content (%C) of sediments in Clyde Fore-
land lakes (Briner et al., 2006b), was measured 
at 550 °C (Heiri et al., 2001) and is reported as 
wt% C of dry sediment. Biogenic silica (BiSiO

2
) 

analysis followed Mortlock and Froelich (1989), 
except for the use of 10% Na

2
CO

3
 solution for 

BiSiO
2
 extraction. BiSiO

2
 concentration was 

measured by spectrophotometry and converted 
to wt% SiO

2
 of dry sediments.

Chironomid Analysis

Chironomids are a diverse and nearly ubiq-
uitous family of holometabolous two-winged 
fl ies. The chitinous head capsules of lake-
dwelling chironomid larvae are often abun-
dant and well-preserved in lake sediments, 
and distinctive morphology makes many sub-
fossil head capsules recognizable to at least 
the generic level (Walker, 2001; Fig. 4). Many 
chironomid taxa have temperature-dependent 
species distributions (e.g., Walker et al., 1991a; 
Lotter et al., 1997), refl ecting the effects of air 
and water temperatures on all stages of their 
life cycles (Oliver, 1971). Accordingly, the past 
decade has seen numerous efforts to develop 
quantitative models (transfer functions) for 
reconstructing late Quaternary paleoclimatic 
or paleoenvironmental variables based upon 
the modern distribution of chironomid species 
along climatic (e.g., Walker et al., 1997; Lotter 
et al., 1999; Brooks and Birks, 2001; Larocque 
et al., 2001; Barley et al., 2006) and other 
environmental gradients, such as lake depth, 
oxygen, and nutrient status (e.g., Quinlan et 
al., 1998; Korhola et al., 2000; Brooks et al., 
2001; Brodersen and Quinlan, 2006; Langdon 
et al., 2006).
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Figure 2. Location maps showing (A) regional setting of Lake CF8 and other sites mentioned in the text (dashed line is tree line), 
(B) position of Lake CF8 on the low-elevation interfjord Clyde foreland, and (C) glacial-geologic features surrounding Lake CF8. 
Topography is shown in grayscale, and lakes are shown in black. Large arrows in panel C indicate former fl ow directions of the Lau-
rentide Ice Sheet within the study area.
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Figure 3. Summary stratigraphy and 
geochronology of Lake CF8 sediment 
cores. Depth scale indicates approxi-
mate depth below the sediment-water 
interface. Cores collected after 2002 
intentionally bypassed some or all of 
the uppermost lithostratigraphic unit. 
Organic gyttja units are shown in 
white, and sand units in gray. Roman 
numerals for lithostratigraphic units 
were fi rst designated by Briner et al. 
(2007). Pre-Holocene optically stimu-
lated luminescence (OSL) ages from 
Briner et al. (2007) are shown in ka 
(thousands of yr B.P.). Representative 
Holocene 14C ages are reported from 
Axford et al. (2009b) in calibrated ka. 
Magnetic susceptibility (MS), percent 
loss on ignition (LOI), and percent 
biogenic silica (BiSiO2) data from 
bulk sediments are also shown.

Figure 4. Photomicrographs showing preservation and morphology of representative chironomid head capsules from Lake 
CF8: (A) Abiskomyia, late Holocene (unit I; approximate width of fi eld-of-view [FOV]—400μm); (B) Oliveridia/Hydrobae-
nus, late Holocene (unit I; FOV—150μm); (C) Heterotrissocladius, Last Interglacial (unit V; FOV—150μm); and (D) Tany-
tarsus lugens/Corynocera oliveri type, Last Interglacial (unit V; FOV—200μm).
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Subfossil chironomid assemblages have been 
widely used to infer late-glacial and Holocene 
paleotemperatures (i.e., temperatures of the past 
~14 k.y.; e.g., Walker et al., 1991b; Brooks and 
Birks, 2000; Cwynar and Spear, 2001; Heiri et 
al., 2003; Porinchu et al., 2003; Caseldine et 
al., 2006; Axford et al., 2007). In a few cases, 
the method has also been applied to older 
Pleistocene sediments (e.g., Hofmann, 1990, 
1991; Francis et al., 2006). Subfossil chirono-
mid remains preserved in older sediments have 
yielded qualitative information about Pliocene 
and Pleistocene paleoenvironments at several 
sites on Greenland (Bocher, 1995; Bennike et 
al., 2000; Brodersen and Bennike, 2003).

Chironomid Extraction and Identifi cation
Chironomid analyses for this study fol-

lowed published methods (e.g., Walker, 2001). 
Wet sediment samples for chironomid analy-
ses were defl occulated in warm 5% KOH for 
20 min and rinsed in deionized water on a 
100 μm sieve. Head capsules, which were abun-
dant and well preserved in all four gyttja units, 
were manually picked from a Bogorov sorting 
tray under a 40× power dissecting microscope 
and then permanently mounted on slides using 
Euparal. With four exceptions (described in the 
following), samples had minimum count sums 
of 50 whole-head capsules. Identifi cations were 
informed by standard reference materials (e.g., 
Oliver and Roussel, 1983; Wiederholm, 1983; 
Brooks et al., 2007). Taxonomic designations 
were harmonized with those of Francis et al. 
(2006) to allow comparison with the published 
calibration data, i.e., training set (see follow-
ing). Taxa were subdivided further where pos-
sible (e.g., Micropsectra, Paratanytarsus, and 
Tanytarsus lugens/Corynocera oliveri type 
were subdivided from the subtribe Tanytarsina) 
but were lumped into the taxonomic designa-
tions of Francis et al. (2006) for the statistical 
analyses described here.

Paleotemperature Inferences and Assessment 
of Modern Analogs

Our ecological knowledge of the Baffi n Island 
chironomid fauna is based upon a training set 
derived from subfossil chironomid assemblages 
from surface sediments spanning northeastern 
North America (Canadian Maritime provinces, 
Labrador, Baffi n, and Devon Islands). The 
data set, composed of chironomid assemblages 
alongside an array of environmental data for 
each site, was fi rst developed by Walker et al. 
(1991a) and later expanded by Walker et al. 
(1997). Francis et al. (2006) added 29 additional 
calibration sites on Baffi n Island, refi ning the 
calibration for Arctic sites. The training set now 
includes 68 calibration sites and 44 chironomid 

taxa (Francis et al., 2006). Mean July air tem-
peratures at the calibration sites range from 5.0 
to 19.0 °C. Both July air temperature and sum-
mer water temperature are dominant environ-
mental gradients correlating with chironomid 
assemblages in the training set.

Paleotemperatures were modeled using 
weighted-averaging regression with inverse 
deshrinking, following the methods of Francis et 
al. (2006), who found that weighted averaging 
models with inverse deshrinking had the great-
est power (highest jackknife cross- validated 
r2, or r2

jack
, and lowest root mean squared error 

of prediction, or RMSEP) in predicting tem-
peratures from eastern Canadian chironomid 
assemblages. Species data were square-root 
transformed to counteract the dominance of 
very abundant species, and temperatures were 
modeled using leave-one-out cross-validation 
and the computer program C2 version 1.4.3 
(Juggins, 2003). Two versions of the weighted 
averaging model—one employing tolerance 
downweighting (WA

tol
) and one without toler-

ance downweighting (WA) but otherwise iden-
tical—were compared in order to assess the 
infl uence of tolerance downweighting on both 
air and water temperature inferences. Weighted 
averaging with tolerance downweighting (WA

tol
) 

has an RMSEP value of 1.5 °C (r2
jack

 = 0.88) for 
July air temperature estimates and an RMSEP of 
2.2 °C (r2

jack
 = 0.88) for summer water tem-

perature estimates. Weighted averaging without 
tolerance downweighting (WA) has RMSEP of 
1.6 °C (r2

jack
 = 0.87) for air temperature and 

RMSEP of 2.6 °C (r2
jack

 = 0.84) for water temper-
ature (Francis et al., 2006). Two of the 22 subfos-
sil taxa identifi ed in Lake CF8 sediments (Table 
1)—Paracladopelma, which has a maximum 
abundance of <2% in down-core samples, and 

Metriocnemus fuscipes type, which has a maxi-
mum abundance of <3%—are not represented in 
the training set and therefore are excluded from 
these analyses. Notably, all Tanytarsina were 
lumped together in the statistical analyses in 
order to achieve taxonomic harmonization with 
the training set. Four samples—the uppermost 
and bottommost samples from unit III, and two 
of the four samples from unit VII—contained 
fewer than 50 head capsules, but because of the 
low diversity of these samples, the count sums 
are likely to be reasonable approximations of 
their taxonomic compositions.

In order to assess the quality of modern ana-
logs for down-core (fossil) samples, we calcu-
lated squared-chord distances (SCDs; Overpeck 
et al., 1985) between each fossil sample and 
each sample in the modern training set. SCDs 
were calculated using program C2 version 1.4.3 
(Juggins, 2003). We report the SCD values to 
each fossil sample’s closest modern analog (i.e., 
the minimum SCD for each fossil sample), and 
compare that dissimilarity with the 5th and 10th 
percentiles of the distribution of SCDs for the 
modern training set. A fossil sample is here con-
sidered to have a close modern analog when its 
minimum SCD is less than the 5th percentile for 
the training set (Simpson, 2007).

RESULTS

General Character of 
Chironomid Assemblages

The organic lake sediment units in the core are 
characterized by very high %LOI and %BiSiO

2
 

and low magnetic susceptibility (MS) com-
pared with the inorganic sand units. The high-
est %LOI and %BiSiO

2
 and lowest MS  -values 

TABLE 1. LIST OF SUBFOSSIL CHIRONOMID TAXA 
IDENTIFIED IN LAKE CF8 LITHOSTRATIGRAPHIC UNITS

Subfossil taxonomic name Unit I
(Holocene)

Unit III
(MIS 5a?)

Unit V
(MIS 5)

Unit VII
(MIS 7)

Abiskomyia x
Chironomus x x
Corynoneura/Thienemanniella x x
Cricotopus/Orthocladius x x x
Eukiefferiella/Tvetenia x x
Heterotrissocladius x x x
Mesocricotopus thienemanni type x x
Metriocnemus fuscipes type x x x
Micropsectra x x x
Oliveridia/Hydrobaenus x x x x
Orthocladiinae undiff. x x x
Paracladopelma x
Parakiefferiella nigra type x x
Paratanytarsus x x
Procladius x x
Protanypus x x x
Psectrocladius x x x
Pseudodiamesa x x
Sergentia x x
Subtribe Tanytarsina undiff. x x x
Tanypodinae undiff. x x
Tanytarsus lugens/Corynocera oliveri type x x
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occur within the Holocene sediments. Chirono-
mids were analyzed throughout the organic 
sediments, and in total, 22 different taxonomic 
types were enumerated (GSA Data Reposi-
tory1). All but three of these taxa were found in 
both Holocene and older sediments (Table 1). 
For comparison, Francis et al. (2006) found a 
total of 30 chironomid taxa in modern sediment 
samples from 29 Baffi n Island lakes spanning a 
large geographic area (11° latitude). Throughout 
the record at Lake CF8, taxonomic assemblages 
are Arctic in character, containing only taxa that 
today are common north of tree line (Francis et 
al., 2006; Barley et al., 2006). Insect remains 
suggesting forested conditions (e.g., Glypto-
tendipes and Chaoborus) are not found in Lake 
CF8 sediments of any age, in contrast with Fog 
and Brother of Fog Lakes ~300 km south on 
east-central Baffi n Island, where such taxa were 
found in Last Interglacial sediments (Francis et 
al., 2006). At several different times, the assem-
blage at Lake CF8 has been dominated by the 
cold stenotherms Oliveridia/Hydrobaenus and 
Pseudodiamesa, which are taxa associated with 
extremely cold, ultraoligotrophic lakes (Brooks 
and Birks, 2004; Francis et al., 2006). Down-
core chironomid assemblages and the tempera-
ture reconstructions derived from them are dis-
cussed in greater detail below, in chronological 
order from most recent to oldest.

Unit I (Holocene)

Chironomid head capsule concentrations in 
unit I range from 70 to 550 head capsules per cm3 
of wet sediment. The highest concentrations are in 
sediments of the earliest Holocene, and chirono-
mids are present from the onset of sedimentation, 
implying very little delay in initial colonization 
following deglaciation. Table 1 provides a com-
plete list of chironomid taxa found in this unit. At 
the onset of lacustrine sedimentation (before 11 
ka; Axford et al., 2009b), the cold stenotherm Oli-
veridia/Hydrobaenus made up nearly all (>96%) 
of the chironomid assemblage (Figs. 4 and 5). 
Oliveridia/Hydrobaenus was abruptly replaced 
by an assemblage dominated by the subtribe 
Tanytarsina (including T. lugens/C. oliveri), and 
corresponding inferred temperatures rose rap-
idly at the onset of the Holocene. The WA model 
infers colder July air temperatures than the WA

tol
 

model (3.4 versus 5.7 °C) for the earliest part of 
the deglacial period, but it also suggests an earlier 
transition into full Holocene warmth.

1GSA Data Repository item 2011044, Chirono-
mid assemblage data from Lake CF8, Baffi n Is-
land, Canada, is available at http://www.geosociety
.org/pubs/ft2011.htm or by request to editing@
geosociety.org.

The WA
tol

 and WA models yield similar 
results for most of the Holocene, although WA

tol
 

indicates a more abrupt cooling transition from 
early to late Holocene, and more dramatic cool-
ing during two brief early Holocene cold events 
(Fig. 6). Very warm July air temperatures (4–
5 °C warmer than present) are inferred by both 
weighted averaging models for most of the early 
Holocene, refl ecting the abundance of Tanytar-
sina, Tanypodinae, and Psectrocladius, which 
are qualitative indicators of relatively warm 
temperatures on Baffi n Island (Francis et al., 
2006; although the group Tanytarsina in this 
region may best be described as eurythermic—
see, for example, Saulnier-Talbot and Pienitz, 
2010). As discussed by Axford et al. (2009b), 
very warm early Holocene temperatures in the 
Baffi n region are supported by prior paleolim-
nological studies (e.g., Miller et al., 2005; Bri-
ner et al., 2006b), as well as evidence for glacier 
melting and changes in the northern range limits 
of marine species (e.g., Dyke et al., 1996; Fisher 
and Koerner, 2003).

Late Holocene chironomid assemblages 
are characterized by the disappearance of T. 
lugens/C. oliveri and Tanypodinae and greater 
percentages of taxa with cold affi nities, includ-
ing Abiskomyia and the cold stenotherms Oli-
veridia/Hydrobaenus and Pseudodiamesa. The 
overall rise of Oliveridia/Hydrobaenus through 
the late Holocene suggests progressive cooling. 
WA

tol
 models fail to reconstruct this additional 

cooling within the late Holocene, perhaps due to 
the lack of colder calibration sites in the training 
set (Axford et al., 2009b); WA models indicate 
some cooling through the late Holocene and 
thus appear to perform somewhat better for this 
period. In the uppermost 2 cm of the record, Oli-
veridia/Hydrobaenus and Pseudodiamesa both 
disappear, qualitatively indicating warming; this 
warming is refl ected most clearly in the WA-
based temperature reconstructions. The decline 
and disappearance of the cold stenotherms 
occurred between A.D. 1950 and 1980, as dated 
by 210Pb (Thomas et al., 2008).

Unit III

Three chironomid samples were analyzed 
from unit III, with head capsule concentrations 
ranging from 50 to 130 heads cm–3. Except for 
one head capsule of Metriocnemus fuscipes 
type in the deepest sample, all three samples 
are composed entirely of the cold stenotherm 
 Oliveridia/Hydrobaenus (Fig. 5; Table 1), 
which is known to occur in very cold, ultraoli-
gotrophic lakes (e.g., Brooks and Birks, 2004). 
WA-inferred July air temperatures throughout 
this unit are ~2 °C. WA

tol
 air temperature infer-

ences from this unit are ~4 °C warmer than 

that, but they are almost certainly overestimates 
given the WA

tol
 model’s demonstrated inability 

to reconstruct July air temperatures below 5–
6 °C, the cold end of the training set calibration 
(e.g., Axford et al., 2009b).

Unit V (Last Interglacial)

Head capsule concentrations in unit V sedi-
ments range from 15 to 900 heads cm–3, the 
highest concentrations of the entire record. 
WA- and WA

tol
-inferred July air temperatures 

are warmer than present (preindustrial) begin-
ning at the very bottom of unit V, refl ecting 
the occurrence of relatively thermophilous 
taxa including Psectrocladius, Procladius, and 
other Tanypodinae, and abundant Tanytarsina. 
The colder inferred temperature for the bot-
tommost sample, relative to samples immedi-
ately above, refl ects the occurrence of the cold 
stenotherm Oliveridia/Hydrobaenus in this 
sample. Peak inferred temperatures in unit V 
(4–5 °C warmer than present according to both 
models) are not signifi cantly different from 
inferred early Holocene temperatures. During 
the warmest part of the Last Interglacial, Tany-
podinae achieved their maximum abundance of 
the entire record (Fig. 6), possibly suggesting 
somewhat warmer conditions than those of the 
Holocene thermal maximum. Unlike at Fog 
and Brother of Fog Lakes to the south (Fran-
cis et al., 2006), taxa commonly found south of 
latitudinal tree line in the modern environment 
do not occur in Last Interglacial sediments of 
Lake CF8.

WA
tol

-inferred temperatures drop at 161 cm 
depth (in core 04-CF8–02; Figs. 4 and 5) in 
response to the appearance (albeit in very low 
abundances) of Pseudodiamesa, Parakiefferi-
ella nigra, and Mesocricotopus and then gradu-
ally rise again up to 151 cm depth. WA-inferred 
temperatures without tolerance downweighting 
do not refl ect these subtle changes in the assem-
blage. Above 151 cm, the cold stenotherms 
Oliveridia/Hydrobaenus and Pseudodiamesa 
appear and then increase in abundance, and 
WA

tol
-inferred temperatures drop precipitously. 

WA-inferred temperatures drop slightly farther 
up in the section, at 143 cm, again displaying 
less sensitivity to the presence of cold indica-
tor taxa with very low abundances. Sergentia, 
Micropsectra, and Pseudodiamesa dominate 
the assemblage in the upper half of the unit, 
T. lugens/C. oliveri declines, and Psectrocla-
dius and Tanypodinae disappear. Differences 
between WA- and WA

tol
-inferred temperatures 

are lowest in the bottom third of unit V, where 
both methods predict very warm temperatures, 
and in the upper three samples, which have 
lower inferred temperatures.
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Unit VII (Penultimate Interglacial, MIS 7)

Head capsule concentrations in unit VII range 
from 5 to 95 heads cm–3. The inferred July air 
temperature for the bottommost sample in this 
unit (~7 °C) is comparable to some samples in 
the mid- to late Holocene. Assemblages in the 
three upper samples in unit VII imply steadily 
declining temperatures. Inferred temperatures at 

the top of this unit are cooler than for any Last 
Interglacial or late Holocene samples, refl ecting 
low percentages of thermophilous taxa. There 
are signifi cant assemblage changes within the 
portion of MIS 7 recorded by unit VII, notably 
the shift from dominance of Heterotrissocladius 
to Oliveridia/Hydrobaenus and the correspond-
ing decline in inferred temperatures. As in unit 
III, inferred temperatures from most samples in 

unit VII are at the low end of the training set’s 
calibration range, and WA-inferred tempera-
tures are likely overestimates.

Comparisons between Temperature 
Inference Models

Figure 6 compares results of four tempera-
ture inference models applied to Lake CF8 
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Figure 6. Percentages of Oliveridia/Hydrobaenus (a cold stenotherm), Abiskomyia, and Tanypodinae (an indicator of relative 
warmth); summer water temperatures inferred using WAtol (solid gray line, RMSEP 2.2 °C) and WA (dashed black line, RMSEP 
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 chironomid assemblages. Tolerance down-
weighting is a common practice giving greater 
weight to important indicator taxa (i.e., taxa with 
narrow environmental tolerances) that may occur 
in low relative abundances. Fifty-eight of the 70 
down-core samples in our study exhibit differ-
ences between WA- and WA

tol
-inferred tempera-

tures of <1.6 °C; in other words, the two meth-
ods predicted temperatures within the model 
RMSEP of each other for 83% of the down-core 
samples. Two types of assemblages exhibit larger 
differences between methods: Samples contain-
ing small percentages of cold stenothermous 
indicator taxa (i.e., less than 5% of taxa such as 
Oliveridia/Hydrobaenus, Pseudodiamesa, Para-
kiefferiella nigra, and Mesocricotopus) exhibit 
large positive differences (i.e., signifi cantly 
colder WA

tol
- versus WA-inferred temperatures). 

In contrast, samples heavily dominated by cold 
indicator taxa, and thus qualitatively suggesting 
temperatures much colder than present, have 
large negative differences (i.e., WA

tol
-inferred 

temperatures signifi cantly warmer than those 
inferred without tolerance downweighting). All 
of the samples with negative differences >1.6 °C 
also have relatively poor analogs in the modern 
training set, suggesting that they will be inher-
ently problematic for quantitative temperature 
reconstruction using the available models. Air 
and water temperature reconstructions exhibit 
very similar trends over time, although inferred 
water temperatures undergo larger absolute 
temperature changes, consistent with the larger 
range of observed water (versus air) tempera-
tures at the calibration sites (Francis et al., 2006).

DISCUSSION

Modern Analogs and Persistence of 
Assemblages through Time

The application of modern calibration data 
to ancient sediments presents the potential for 
“no-analog” subfossil assemblages, as well 
as past morphological and ecological changes 
within species (e.g., Brooks, 2006; Williams 
and Jackson, 2007). However, the antiquity of 
fossil assemblages at Lake CF8 does not predict 
whether they will have close modern analogs. 
Indeed, many ancient assemblages from the Last 
Interglacial and even MIS 7 have closer analogs 
in the modern environment than some Holo-
cene assemblages. Based upon SCD measure-
ments (Fig. 6), most samples from the mid- to 
late Holocene, Last Interglacial, and MIS 7 have 
close analogs in the calibration data set (i.e., 
minimum SCDs less than the 5th percentile from 
the training set). The closest modern analogs 
for mid- to late Holocene and late Last Intergla-
cial samples are sites on northern Baffi n Island 

(Walker et al., 1997; Francis et al., 2006). Early 
Holocene and early Last Interglacial samples 
have closest modern analogs on southern Baffi n 
Island and ~1600 km farther south in central and 
northern Labrador. For example, several Last 
Interglacial samples have a closest modern ana-
log in 5-m-deep Lake 42 (Walker et al., 1997), 
150 km from the Atlantic coast in Labrador at 
54.8°N (Fig. 2). The oldest sample in the core, 
from the deepest MIS 7 sediments we recovered, 
has its closest modern analogs in northern Labra-
dor, at ~57.3°N, south of the Torngat Mountains.

The samples with the largest SCDs, i.e., most 
problematic analogs, are the coldest samples: 
samples from the unit III interstadial, the late-
glacial period preceding the onset of early 
Holocene warmth, and the fi nal stages of MIS 
7 and the Last Interglacial, when climate cooled 
toward glacial conditions. Given that none of the 
modern calibration sites is signifi cantly colder 
than Lake CF8 today, the lack of close analogs 
for assemblages during periods colder than 
present is unsurprising.

Some samples from the warm early Holocene 
also lack close analogs. This might seem to sug-
gest that the early Holocene assemblages, which 
are heavily dominated by the subtribe Tanytar-
sina, could be pioneering assemblages that refl ect 
either a long lag in postglacial colonization or 
long-term ecological impacts of postglacial lake 
ontogeny. However, a long lag in colonization 
seems very unlikely, given widespread evidence 
for rapid dispersal and colonization by chirono-
mids, including the diverse assemblage preserved 
at Lake CF8 from the early part of MIS 5e. Geo-
logic evidence indicates that the Laurentide Ice 
Sheet accomplished very little erosional or depo-
sitional modifi cation of Lake CF8 or the sur-
rounding landscape (Briner et al., 2003, 2007), 
which may argue against extensive postglacial 
ontogenetic changes in the lake environment. The 
existence of close analogs for early Last Intergla-
cial samples, which do not exhibit such extreme 
dominance by Tanytarsina, further argues against 
both of these possibilities. On the other hand, a 
similar early Holocene phase of Tanytarsina-
dominated assemblages has been documented 
at nearby Lake CF3 (Briner et al., 2006b) and in 
lakes on the Ungava Peninsula just south of Baf-
fi n Island (Saulnier-Talbot and Pienitz, 2010; Fig. 
2). It has been suggested that the dominance of 
Tanytarsina in early postglacial sediments in this 
region might represent a phase of postglacial suc-
cession (Saulnier-Talbot and Pienitz, 2010). If so, 
it is interesting that the onset of the Last Intergla-
cial at Lake CF8 was not quite so conspicuously 
dominated by Tanytarsina.

The chironomid faunas preserved in the 
Holocene and older interglacial sediments are 
very similar in character, with few major dif-

ferences in terms of the taxa present (Table 
1). The most notable exception is Abiskomyia, 
which is abundant throughout much of unit I 
and in modern sediments from the lake but is 
conspicuously absent from all pre-Holocene 
sediments. Abiskomyia is also abundant in 
Holocene but is absent from Last Interglacial 
sediments from lakes on east-central Baffi n 
Island (Francis et al., 2006), suggesting that it 
may be a recent immigrant to the region, con-
sistent with its limited geographic distribution 
today (e.g., Gajewski et al., 2005). Paraclado-
pelma is rare but present (maximum abundance 
<2%) in Holocene sediments from Lake CF8, 
and like Abiskomyia, it is absent from older 
units. Metriocnemus fuscipes type was found 
only in the pre-Holocene units. All other identi-
fi ed taxa were found in both Holocene and older 
units at Lake CF8 (see Table 1). Overall, despite 
intervening glaciations, which must have extir-
pated most or all chironomid species from the 
region, the chironomid fauna of MIS 7, the Last 
Interglacial, and the Holocene were very similar 
at Lake CF8. This suggests remarkable stability 
of northern Baffi n Island interglacial chirono-
mid faunas through the late Quaternary, and the 
ability of chironomids to rapidly repatriate land-
scapes after deglaciation.

Climate of the Penultimate Interglacial 
(MIS 7)

Geophysical surveys indicate that coring did 
not penetrate to the base of MIS 7; future efforts 
in the fi eld might capture older sediments. The 
bottommost MIS 7 sample we analyzed con-
tains a relatively diverse chironomid assem-
blage, and both weighted averaging methods 
predicted air temperatures of ~7 °C. The old-
est sediments recovered from Lake CF8 appear 
to record a time when summer temperatures 
were slightly warmer than the preindustrial late 
Holocene. This is consistent with prior studies 
showing near-modern temperatures over parts 
of MIS 7 (e.g., de Vernal and Hillaire-Marcel, 
2008). The younger MIS 7 sediments record a 
gradual decline into temperatures more compa-
rable to late-glacial times, presumably followed 
by glacial conditions and a hiatus in deposition 
that lasted until the penultimate deglaciation 
(i.e., Termination 2).

Climate of the Last Interglacial

Extreme Last Interglacial warmth in the Baf-
fi n Bay region, compared with other parts of 
the Northern Hemisphere and even other parts 
of the Arctic, is hypothesized to have resulted 
from strong amplifi cation of insolation-driven 
warming by cryospheric (e.g., sea-ice) and 
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land-cover feedbacks (CAPE Last Interglacial 
Project Members, 2006), similar to those that 
are accelerating warming in the Arctic today 
(e.g., Overpeck et al., 1997; Chapin et al., 2005; 
Serreze et al., 2009). Paleotemperature records 
from luminescence-dated Last Interglacial lake 
sediment sequences on Baffi n Island south of 
the Clyde region reveal a Last Interglacial tem-
perature anomaly at least as large as at Lake 
CF8, and in some cases larger (Miller et al., 
1999; Wolfe et al., 2000; Francis et al., 2006; 
Fréchette et al., 2006). Chironomid data from 
Fog and Brother of Fog Lakes on the Cum-
berland Peninsula (Fig. 2) record peak Last 
Interglacial air temperatures as much as 7–8 °C 
warmer than present, and Last Interglacial sedi-
ments from both lakes contain thermophilous 
chironomids and Chaoborus (Chaoboridae) 
that are not seen in the Holocene (Francis et al., 
2006). Pollen data indicate that summers during 
the peak of the Last Interglacial were 3–5 °C 
warmer than today, with Last Interglacial sedi-
ments at Fog Lake containing higher percent-
ages of shrub (Alnus and Betula) pollen than 
Holocene sediments (Fréchette et al., 2006).

Unlike these records from farther south on 
Baffi n Island, the chironomid data from Lake 
CF8 suggest that summer temperatures through 
much of the early Holocene were comparable 
to the warmth of the Last Interglacial. This 
contrasts with the higher sea level documented 
for MIS 5e relative to the Holocene (e.g., 
Koerner, 1989; Cuffey and Marshall, 2000; 
Muhs, 2002; CAPE Last Interglacial Project 
Members, 2006; Otto-Bliesner et al., 2006; 
Overpeck et al., 2006), and with the observa-
tion that maximum Arctic summer insolation 
during the Last Interglacial coincided with 
relatively protracted ice-sheet extent (com-
pared with the Holocene insolation maximum) 
and thus drove a larger temperature response 
(CAPE Last Interglacial Project Members, 
2006). The apparent discrepancy between 
Lake CF8 chironomid-inferred Last Inter-
glacial temperatures and other paleoclimate 
records may refl ect real spatial heterogeneity 
in the expression of Last Interglacial warmth 
across the Arctic. Alternatively, early Holo-
cene temperature reconstructions from Lake 
CF8 may be overestimates, perhaps because 
many of the early Holocene samples do not 
have close analogs in the modern calibration 
data, whereas Last Interglacial samples appear 
to have very good analogs. However, signifi -
cant early Holocene warmth in this region is 
supported by other records, including melt on 
Agassiz Ice Cap (Fisher and Koerner, 2003). A 
third possibility, and the explanation we favor, 
is that chironomid assemblages at Lake CF8 
may not have registered the full extent of Last 

Interglacial warmth. Tree line is a major eco-
logical threshold for chironomids (e.g., Walker 
and Mathewes, 1989; Walker, 1990; Walker 
and MacDonald, 1995), and some of the fossil 
chironomid taxa that suggest very warm Last 
Interglacial temperatures at east-central Baf-
fi n Island lakes are taxa that today live south 
of latitudinal tree line (Francis et al., 2006). 
Shrubifi cation or afforestation of more south-
ern sites under Last Interglacial warmth would 
have allowed for immigration of these chirono-
mid taxa, whereas Lake CF8 farther north may 
not have offered appropriate habitat for these 
taxa. Additional independent proxy data from 
Lake CF8 (e.g., pollen, organic geochemistry) 
would help with interpreting this discrepancy 
between Last Interglacial paleotemperature 
reconstructions from Lake CF8 and other sites.

Despite these caveats regarding absolute 
temperature estimates for the Last Interglacial, 
the Lake CF8 record is unusual in that it pre-
serves temporal structure within the Last Inter-
glacial. Chironomid assemblages record full-
interglacial temperatures at the onset of Last 
Interglacial lacustrine deposition, implying 
that relatively warm temperatures were already 
established at the time of local deglaciation. 
In contrast, the Holocene experienced a more 
prolonged ramp-up of temperatures after degla-
ciation, as indicated by very cold temperatures 
inferred for the deepest unit I sediments. Lake 
CF8 chironomids also suggest a cold rever-
sal within the period of peak Last Interglacial 
warmth. Peak Last Interglacial warmth at Lake 
CF8 was later followed by a fi nal descent into 
colder temperatures, which persisted at the site 
for some time before lacustrine sedimentation 
ceased with the descent into glacial conditions. 
The temperature record inferred from Lake 
CF8 is thus consistent with the observation that 
peak Last Interglacial warmth ended thousands 
of years before sea level dropped below (i.e., 
global ice volume exceeded) modern-day val-
ues (Zagwijn, 1996).

The observed pattern of early warmth fol-
lowed by subsequent cooling is similar to many 
records that span MIS 5e (e.g., Petit et al., 1999; 
McManus et al., 2002; EPICA Community 
Members, 2004). The structure and amplitude 
of millennial-scale Last Interglacial temperature 
changes at Lake CF8 were apparently similar to 
those of the Holocene. The thickness of unit V 
(Last Interglacial) is also similar to that of unit 
I (Holocene), especially after accounting for 
compaction of unit V, which can be estimated 
based upon unit V’s lower moisture content and 
greater density (Axford, 2007): The dry mass 
accumulation (per cm2) represented by units V 
and I are very similar (Axford et al., 2009a). 
These observations support the hypothesis that 

unit V sediments record only MIS 5e, i.e., the 
Last Interglacial sensu stricto. However, we can-
not rule out the possibility that unit V records a 
longer interval of MIS 5, e.g., part or all of 5d 
and 5c in addition to 5e.

Evidence for MIS 5 Ice-Sheet Fluctuations

The three radiocarbon ages from unit III 
(reported by Briner et al., 2007) are nonfi nite, 
indicating that this unit is older than ca. 48 ka. 
Unit V (MIS 5e) provides a maximum limit-
ing age. We therefore correlate unit III with 
either MIS 5c or 5a, the two periods of small-
est global ice volume (Martinson et al., 1987) 
and highest summer insolation at northern lati-
tudes (Berger and Loutre, 1991) between MIS 
5e and 48 ka. Unit III and the underlying sand 
unit together provide evidence for an ice-sheet 
advance and subsequent retreat during MIS 5. 
Such an advance has long been hypothesized 
(Miller et al., 1977; Miller and deVernal, 1992; 
Marshall, 2002; Yoshimori et al., 2002; Rud-
diman et al., 2005), but CF8 sediments pro-
vide rare direct evidence and constraints on 
ice extent: Ice had to advance at least as far as 
the lake to deposit sands from an ice-marginal 
meltwater channel (the lake is situated well 
above local river valleys, implying a local 
source for the sands), and later retreated behind 
the lake to allow for deposition of lake sedi-
ments including lacustrine microfossils in unit 
III. Based on the chironomid assemblage, tem-
peratures were signifi cantly colder than today. 
Deposition of organic lake sediments in unit 
III, coupled with the presence of chironomids, 
diatoms, and bryophytes, indicates conditions 
in which the lake had at least an ice-free moat 
for part of the summer.

Holocene sediments overlying Last Intergla-
cial sediments have been recovered from several 
lakes on Baffi n Island (Wolfe et al., 2000; Miller 
et al., 2002; Francis et al., 2006; Fréchette et 
al., 2006), but in contrast, those lakes contain 
no evidence for viable lake ecosystems during 
an intervening interstadial period. These lakes 
sit at 360–848 m above sea level (asl), higher 
elevations than Lake CF8. It is possible that 
they remained covered by glacier ice, or at least 
perennially frozen, despite deglaciation of the 
ice-distal, low-lying Clyde Foreland.

Twentieth Century in Context of the Past 
200,000 Years

Thomas et al. (2008) discussed the mid-
twentieth-century extirpation of cold steno-
thermous chironomid taxa from Lake CF8, and 
pointed out that this signifi cant faunal change 
and the associated reconstructed warming 
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are unprecedented for this site over the past 
5000 yr. This begs the question of whether 
twentieth-century warming and faunal assem-
blage shifts are unprecedented over longer time 
scales. The long record presented here reveals 
that, over the past 200,000 yr, extended periods 
warmer than the latter half of the twentieth-cen-
tury were rare. Only the insolation-driven peaks 
of the Last Interglacial and the early Holocene 
thermal maximum were warmer, and these were 
the only other periods of the past 200,000 yr 
during which both Oliveridia/Hydrobaenus 
and Pseudodiamesa were absent from the lake. 
Recent chironomid-inferred temperatures at 
Lake CF8 are thus not unprecedented over the 
period of record, but they only have analogs 
during two periods that experienced enhanced 
Northern Hemisphere insolation forcing rela-
tive to today. Examining a broader multiproxy 
data set derived from the Lake CF8 sediments 
discussed here, Axford et al. (2009a) found 
that, collectively, the combined biological and 
geochemical changes (from shifts in diatom 
and chironomid assemblages to organic carbon 
sources) that occurred at this site during the 
twentieth-century are indeed unique within the 
past 200,000 yr.

CONCLUSIONS

Paleoecological data from Lake CF8 dem-
onstrate that sediments preserved beneath 
cold-based portions of Pleistocene ice sheets 
can record changing climate and environmen-
tal conditions throughout multiple interglacial 
periods. Chironomid remains in Lake CF8 
are well preserved in 200,000-yr-old sedi-
ments, providing an Arctic paleotemperature 
record that extends further back in time than 
the Greenland ice-core records. Ancient chi-
ronomid assemblages at Lake CF8 (except for 
during the coldest periods) have close analogs 
in modern calibration data from northeastern 
North America. There is no deterioration in 
the quality of modern analogs with age of fos-
sil assemblages from Lake CF8. In fact, Last 
Interglacial assemblages on average have closer 
modern analogs, as determined by squared-
chord distance, than fossil assemblages from 
the Holocene. Taxa show remarkable persis-
tence over time, with little difference between 
interglacials in terms of the particular taxa pres-
ent despite intervening periods of continent-
scale glaciation. A notable exception is Abis-
komyia, a late immigrant that did not appear at 
Lake CF8 until the Holocene.

Temperature reconstructions based upon 
weighted-averaging models indicate that three 
periods of the past 200,000 yr experienced sum-
mer temperatures warmer than the preindustrial 

late Holocene on Baffi n Island: the early Holo-
cene, the early part of the Last Interglacial (MIS 
5e), and some portion of MIS 7, the penultimate 
interglacial period. The early Holocene and MIS 
5e also experienced temperatures warmer than 
those reconstructed for the late twentieth century 
at Lake CF8. Warmth during these periods cor-
relates with known positive anomalies in sum-
mer solar insolation that were most pronounced 
at high northern latitudes. Reconstructed MIS 5e 
air temperatures were 4–5 °C warmer than pre-
industrial late Holocene temperatures, but unlike 
many records from the Arctic, the Lake CF8 
chironomid record does not clearly indicate that 
MIS 5e was warmer than the early Holocene. 
This discrepancy, which we hypothesize could 
be related to vegetation dependence of the adult 
phase for some chironomid species, should be 
investigated with additional, independent proxy 
data from Lake CF8 sediments or other archives. 
The Lake CF8 sediment record provides direct 
evidence for a long- hypothesized ice-sheet 
advance and subsequent retreat (regional degla-
ciation) during MIS 5.

Major climate trends within the three past 
interglacial periods, extending to the present 
decade, are also recorded by chironomid assem-
blages from Lake CF8. For example, chirono-
mid assemblages record the descent into gla-
cial conditions following both MIS 7 and MIS 
5e, as well as twentieth-century warming that 
recently interrupted the insolation-driven cool-
ing trend inferred through the late Holocene. 
This unusual sedimentary archive and the chi-
ronomid remains preserved within it provide a 
rare long-term perspective on terrestrial condi-
tions in the Arctic, a sensitive region that plays 
an important role in global climate change.
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