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Abstract

The retreat of the Barents Sea Ice Sheet was a major event in the last deglaciation of the Arctic. Numerous studies document
the fine details of the seafloor that reveal a highly dynamic ice sheet somewhat analogous to the West Antarctic Ice Sheet.
Despite detailed records of the Barents Sea Ice Sheet’s dynamics, comparatively few studies have provided chronological
control that constrains its history of final collapse. We report cosmogenic '’Be exposure ages from 14 glacial erratics, nine
moraine boulders and one bedrock surface from southern Bjgrngya, an island situated in the Barents Sea between Svalbard
and Norway. 17 of 24 samples average 12.4 +0.5 ka with no significant relationship between age and elevation. We inter-
pret the ages to represent the time when Bjgrngya, and the shallow Spitsbergenbanken upon which it sits, became finally
deglaciated following break up of the Barents Sea Ice Sheet. The timing of deglaciation, overlapping with the early Younger
Dryas, suggests that Younger Dryas climate change did not reverse overall glacier recession, although we cannot rule out a

stillstand or re-advance during the early Younger Dryas.
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Introduction

Information derived about the past response of ice sheets
to climate change can lead to an improved understand-
ing of future ice sheet stability and sea level change. The
behavior of contemporary ice sheets in the face of ongoing
rapid climate change is complex, and ice sheet dynamics
ensure that the relationship between climate forcing and ice
sheet response is not simple [1, 19]. Past ice sheets prone
to collapse are of particular importance, and for this reason
the configuration and history of the Barents Sea Ice Sheet
(Fig. 1) has been the focus of many studies (e.g., [8, 15, 16,
24, 40). In addition, because the marine-based Barents Sea
Ice Sheet is often likened to the West Antarctic Ice Sheet,
many studies have focused on its dynamics (e.g., [13, 30,
29, 43).
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During the Last Glacial Maximum the margin of the
Barents Sea Ice Sheet was located along the western and
northern continental shelf break; ice flowed over or merged
with ice domes on Svalbard, and converged with ice flowing
from Scandinavia (Fig. 2; e.g., [16, 43]). It is thought that
the ice sheet started to thin between 26 and 20.5 ka in high
elevation regions of northwestern Svalbard [10, 14]. The
recent synthesis of Hughes et al. [15] depicts the marine ice
margin initiating retreat from the shelf break around 20 ka
in the major troughs that drained the ice sheet (Fig. 2). Sub-
sequent retreat progressed until the Barents Sea Ice Sheet
had mostly retreated out of the central Barents Sea between
~15 and 14 ka, and back to terrestrial centers between 14
and 12 ka [Hughes et al. 15].

Despite the overall configuration and timing of deglacia-
tion of the Barents Sea Ice Sheet being generally known,
there are relatively few locations in the Barents Sea with
absolute ages of ice margin retreat. The Barents Sea floor
contains deep troughs and shallow banks, but there are no
islands in the central Barents Sea, leaving '*C ages from
marine sediment cores being the best option for chronol-
ogy. However, an opportunity exists to constrain the tim-
ing of ice retreat from the western Barents Sea at Bjgrngya,
a remote island between Norway and the Svalbard archi-
pelago (Fig. 1), using cosmogenic '°Be exposure dating.
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Fig.1 Map of the western Barents Sea showing Svalbard and other
important places mentioned in the text. Bathymetric data from
IBCAO Version 3.0 [17]

Bjgrngya lies along the shallow Spitsbergenbanken (water
depth 30—80 m) and near the mouths of the Bjgrngyrenna
and Storfjordennna glacial trough systems that drained the
Barents Sea Ice Sheet via the massive Bjgrngya and smaller
Storfjorden paleo-ice streams (e.g., [21, 24, 29, 43]). In this
paper, we report 24 '“Be exposure ages from Bjgrngya that
constrain the final deglaciation of the Barents Sea Ice Sheet
along southern Spitsbergenbanken.

Setting

Bjgrngya (178 km?; Fig. 3) has relatively subdued and low-
lying topography in the north and more relief in its eastern
and southern portions, with some summit elevations reach-
ing 360 m asl (Antarcticfjellet), 421 m asl (Alfredfjellet),
and 536 m asl (Myseryfjellet). Bjgrngya is situated at the
oceanographic polar front where cold, relatively fresh Arctic
Water masses meet warm and saline Atlantic water [41].
At present, the North Atlantic Current splits into branches
west and south of Svalbard: the West Spitsbergen Current
travels northward along western Svalbard, and the Nord-
kapp Current enters into the Barents Sea and eventually into
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the Arctic Ocean. Weather observations have occurred on
Bjgrngya since 1910 AD; the mean annual temperature is
— 1.7 °C, average winter snow depth is 10 cm, and mean
annual precipitation is 371 mm (1960-1990, eKlima.met.
no). The bedrock geology of the island consists of sedimen-
tary formations, including carbonate, sandstone, shale and
conglomerate dating from the Late Proterozoic to Mesozoic
[45].

To date, the most comprehensive study of the glacial his-
tory of Bjgrngya is that of Salvigsen and Slettemark [36],
who documented thin patches of till, erratics of local prov-
enance, and glacial erosional features indicative of outward
radiating ice flow from central Bjgrngya. There is no evi-
dence for isostatic uplift on Bjgrngya, and thus it appears
that the island is beyond the zero meter isobase [24, 36].
Salvigsen and Slettemark [36] concluded that Bjgrngya was
covered by local ice only, and not by the Barents Sea Ice
Sheet. Landvik et al. [24] suggested the alternative that the
erosional imprint represents a final phase of ice cover (e.g.,
during final deglaciation), and that the island could have
been covered by Barents Sea ice earlier (e.g., during the Last
Glacial Maximum; cf Landvik et al. [23]).

In terms of chronology, the best constraint to date for
the deglaciation of Bjgrngya itself is a '*C age obtained
by Wohlfarth et al. [44] from a macrofossil in basal lake
sediments in north-central Bjgrngya of 9795 +90 *C year
BP (11,195 +400 cal year BP; mid-point + 20 age range).
Offshore, there is additional chronology that is useful for
constraining the deglaciation of Bjgrngya. The ice stream
occupying Storfjordrenna began to retreat prior to 19.4 cal
ka, and perhaps between 21.2 and 19.8 cal ka [18, 32]. The
major ice stream occupying Bjgrngyrenna began its final
deglaciation ~ 16.6 cal ka following a readvance [35]. A
comparatively smaller trough, Kveithola, exists off north-
eastern Bjgrngya, where '*C ages from marine sediment
cores constrain deglaciation to prior to 14.2 cal ka [34].
Riither et al. [34] interpreted ice-rafted sediments dating to
between 14.2 and 13.9 cal ka to be sourced from ice over
Spitsbergenbanken, after which marine evidence for proxi-
mal ice is absent.

Methods

We collected 23 samples from boulders for °Be dating in
the southern part of Bjgrngya (Figs. 3, 4). One additional
sample was collected from a glacially-sculpted bedrock sur-
face (AEM-8). Most boulders stand 1-3 m above the land
surface, although several are less than one meter above the
surface. We collected samples for ’Be dating from three
main areas from a range of elevations throughout southern
Bjorngya (Figs. 3, 4). The first area is west of Ellasjgen;
the samples AEM and IEM are taken on small bouldery
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Fig.2 Maps showing the degla-
ciation of the western Barents
Sea modified from Hughes et al.
[15]

end moraines between 17 and 54 m asl. Samples were also
collected from the ridges surrounding Ellasjgen; Landngrd-
ingsvika lies between 59 and 139 m asl, and the Skurven
ridge ranges from 121 to 153 m asl. The third sampling area
is located on summits Alfredfjellet (at 293 m asl) and Ant-
arcticafjellet (at 340-351 m asl).

Samples were collected with a saw, hammer and chisel.
Sample thickness was measured in the field and was between
1.6 and 4.1 cm. Sample elevation and position was recorded
with a barometrically corrected GPS that was adjusted to
known altitudes several times during the day; topographic
shielding was calculated with a clinometer. Given low aver-
age winter snow depth, we calculate ages with no snow
shielding. We also note from past experience collecting
samples in the Arctic during the spring that boulders pro-
truding above the ground are usually windswept and not

covered by snow. Boulder surfaces may have experienced
surface erosion and weathering since deposition. Boulder
surface erosion would vary according to lithology (the '°Be
ages are mostly from sandstone lithologies, but sourced from
different formations). We are not aware of studies on erosion
rates of these lithologies and, therefore, report ages assum-
ing zero boulder surface erosion. When we calculate the
10B¢ ages using a nominal Arctic rock surface erosion rate
of 1 mm kyear™!, [4] the ages become 0.3-2.0% (average
1.1%) younger.

Physical and chemical processing of rock samples for
10Be analysis took place at the University at Buffalo Cos-
mogenic Nuclide Laboratory following a modified version
of previously described procedures [7, 20]. Approximately
225 ug of *Be carrier was added during sample prepara-
tion; beryllium ratios were measured by accelerator mass
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Fig.3 Map of southern Bjgrngya (inset shows all of Bjgrngya) show-
ing sample ID and '°Be age. Ttalic (sample AEM-8) designates bed-
rock sample. Sample details reported in Table 1. Moraines west of

spectrometry at Lawrence Livermore National Labora-
tory and normalized to standard 07KNSTD3110 with a
reported ratio of 2.85x 10'? [28, 33]. Procedural blank
ratios were 1.44x 107", 2.99x 107 "%, and 4.17x 107",
equating to an average background correction of 2.12% of
the sample total (except for sample KH-1, age 3.5+0.1 ka,
the background correction is 10.9%). One-sigma analytical
uncertainties on background-corrected samples range from
1.63 to 5.55% and average 2.39%.

The individual '°Be ages are reported in Table 1. The
19Be ages were calculated via the CRONUS-Earth online
exposure age calculator [3, version 3, http://hess.ess.
washington.edu/] using a production rate for the Arctic
(3.93+£0.15 atoms g year™ ! using Lm scaling; Young
et al. [46]) and the Lm scaling scheme [3, 22, 38]. Ages in
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Ellasjgen depicted in green (samples IEM and AEM). Location of
Bjgrngya shown in Fig. 1. Basemap (and inset) from toposvalbard.
npolar.no; contour interval is 50 m

Table 1 are also reported using the LSDn scaling scheme
[25; see Table 1 for details].

Results and interpretation

The '“Be ages of glacially transported sandstone and con-
glomerate boulders are from elevations spanning from 17
to 350 m asl and range from 3.5 to 25.6 ka (Table 1; Fig. 5).
Notable features of the dataset are an anomalously young
erratic (KH-1; 3.5+0.1 ka), a cluster of erratic ages that
average 12.4 +0.5 ka (n=16), and six older erratics that
range from 14.0 to 25.6 ka (Fig. 5). The bedrock sample
(AEM-8) yields a '°Be age of 12.2+0.3 ka (Table 1). When
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Fig.4 Photographs of selected boulders sampled for '°Be dating on Bjgrngya (locations shown in Fig. 2; ages found in Table 1)
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Fig.5 The distribution of '°Be ages on Bjgrngya; thin lines represent
each individual °Be age and bold line is the summed probability of
all '°Be ages

and 14 ka. We suppose it is possible that Bjgrngya deglaci-
ated between 15 and 14 ka and subsequently re-grew and,
therefore, we are dating the timing of final deglaciation.
Although we cannot rule this out, we point out that the age
control from near Bjgrngya was previously too sparse to lend
very high confidence in a 15—-14 ka age for deglaciation. In
any case, like Riither et al. [34], Hughes et al. [15] recon-
structed ice lingering over Spitsbergenbanken longer than
in adjacent areas of the Barents Sea. The direct chronology
that we obtained for the final deglaciation of Bjgrngya of
12.4 +0.5 ka is younger by one to two thousand years than
these previous reconstructions. This suggests that ice lin-
gered on Spitsbergenbanken, and possibly in other shallow
portions of the Barents Sea, for longer than what is shown by
Hughes et al. [15]. This is consistent with the reconstruction
of Hogan et al. [13] in the northern Barents Sea, which simi-
larly depicts ice remaining in shallow portions of the Barents
Sea until ~13.5 to ~ 11.5 ka, although their ice extents are
based on relatively few age constraints.

The timing of deglaciation of Bjgrngya, overlapping with
the early portion of the Younger Dryas period (12.9-11.7 ka)
provides some insight about Younger Dryas climate change
in this region. It suggests that there was not a strong glacier

@ Springer
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response during the Younger Dryas. Indeed, the fact that
ice finally disappeared during the Younger Dryas counters
against it being a period of summertime cooling favorable
for ice growth. This contrasts with advances during Younger
Dryas farther south, in western Norway [26]. On the other
hand, our finding is compatible with the lack of a glacier
advance beyond the present ice extent in western Spitsbergen
[27], and elsewhere in the Arctic (e.g., Pendleton et al. [31]).

Before making firm conclusions about the timing of ice
recession in comparison to the Younger Dryas period, how-
ever, we must consider the average 'Be age using other
possible production rates. The average age calculated using
the production rate of Borchers et al. [5; based on two cali-
bration sites each in the northern and southern hemispheres,
reported value using Lm scaling is 4.00 atoms g year™ '] is
12.0+0.6 ka, and using the Scandinavia-wide production
rate from Stroeven et al. ([39]; based on four calibration sites
in Sweden and Norway; reported value using Lm scaling
is 4.13+0.11 atoms g year™ ') is 12.1 +0.6 ka. We prefer
the average 'Be age using the Baffin Bay rate of Young
et al. [46; based on two sites on Greenland and one on Baf-
fin Island] because it is indistinguishable from the average
of four sites from Norway (two from Goehring et al. [11]
and two from Fenton et al. [9]), and in addition it is indis-
tinguishable from the northeastern North America produc-
tion rate [2]. Regardless, we cannot rule out that Bjgrngya
deglaciated just prior to the Younger Dryas nor at the end
of the Younger Dryas, although we find it more likely given
all age calculations and uncertainties, that the island likely
deglaciated as late as the middle Younger Dryas, and as early
as the beginning of the Younger Dryas. There is some evi-
dence from northern Norway for glacier advance during the
Allergd and retreat during the middle Younger Dryas [37,
42]. We speculate that this could also be a possibility for
the ice cap covering Bjgrngya, given the presence of small
moraines, which may delimit a stillstand or re-advance that
occurred within the Younger Dryas.

Conclusions

Our best estimate for the age of final deglaciation of
Bjgrngya is 12.4 +0.5 ka, which overlaps with the Younger
Dryas. Given current uncertainties, we cannot rule out that
Bjgrngya deglaciated prior to, or even after, the Younger
Dryas. This timing of deglaciation for the entire island from
low to high elevation suggests that ice lingered over the shal-
low Spitsbergenbanken in the western Barents Sea later than
prior work depicts. The significance of the final collapse
of ice in the Barents Sea and the opening of a new gate-
way between Atlantic and Arctic ocean basins could have
important ramifications for the climate system. Additional
19Be ages from other southern and eastern islands within

@ Springer

the Svalbard archipelago could help to further constrain the
timing of the final demise of the Barents Sea Ice Sheet.
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