Rapid ice retreat in Disko Bugt supported by 10Be dating of the last recession of the western Greenland Ice Sheet

Samuel E. Kelleya,* Jason P. Brinera, Nicolás E. Youngb

aDepartment of Geology, University at Buffalo, Cooke 411, Buffalo, NY 14260, USA
bLamont-Doherty Earth Observatory, Comer 217, P.O. Box 1000, Palisades, NY 10964, USA

Abstract

Due to rising sea levels and warming ocean currents, marine-based sectors of the Greenland and Antarctic ice sheets are particularly vulnerable to warming climate. Reconstructions of the timing of marine-based ice margin fluctuations in Greenland during the early Holocene can provide context for historical and modern observations of ice-sheet change. Here, we generate a 10Be chronology of ice-sheet retreat through Disko Bugt, western Greenland. Our new chronology, consisting of twelve 10Be ages from sites surrounding and within Disko Bugt, fills a gap in the history of the western margin of the Greenland Ice Sheet and allows for a continuous composite record of ice-margin recession between the continental shelf break and the current margin. We constrain the onset of ice-margin retreat from outer Disko Bugt to 10.8 ± 0.5 ka. When combined with previous chronologies, these results place the final Greenland Ice Sheet retreat out of Disko Bugt onto land at Jakobshavn Isfjord and Qasigiaanguit at 10.1 ± 0.3 ka, and later at 9.2 ± 0.1 ka in southeastern Disko Bugt. The rate of retreat during this time period is between $\sim 50-450$ m a$^{-1}$ for central Disko Bugt and $\sim 50-70$ m a$^{-1}$ along the southern coast of Disko Bugt. Deglaciation of Disko Bugt occurred ~ 1000 years later than in neighboring Uummannaq Fjord to the north. This asynchrony in the timing of deglaciation suggests that local ice dynamics played an important role in the retreat of the Greenland Ice Sheet from large marine embayments in western Greenland.

1. Introduction

Interest in the Greenland Ice Sheet (GrIS) has grown in recent years as investigations have demonstrated drastic Arctic warming during the 20th century, including $\sim 2 ^\circ$C in western Greenland (Box, 2002; Kaufman et al., 2009; Fisher et al., 2012; Perren et al., 2012). Warming in the Arctic has been shown to outpace global temperature rise, with the warming intensified through positive feedbacks, such as those related to Arctic Ocean sea-ice cover (Serreze et al., 2009; Miller et al., 2010; Maslanik et al., 2011). This accelerated warming is important for future sea-level rise predictions, as the increase in mass lost from Earth’s ice sheets, such as the GrIS, is expected to become the dominant factor in eustatic sea-level rise, soon surpassing contributions to sea-level rise from ice caps and alpine glaciers and thermal expansion of the oceans (Meier et al., 2007; Joughin et al., 2010; Rignot et al., 2011).

Records of past glacier fluctuations spanning the Holocene are necessary to place firsthand ice-margin observations from historic accounts, aerial photographs, and satellite imagery in the broader context of pre-historic ice margin fluctuations (e.g. Weidick, 1968; Weidick, 1994; Rignot and Kanagaratnam, 2006; Csatho et al., 2008; Bjørk et al., 2012; Kjær et al., 2012). Recent efforts have led to increasingly robust terrestrial chronologies for GrIS margin fluctuations during the Holocene (e.g. Weidick et al., 1990; Kaplan et al., 2002; Weidick et al., 2004; Möller et al., 2010; Hughes et al., 2012; Kelley et al., 2012; Levy et al., 2012; Roberts et al., 2013; Young et al., 2013a). Reconstructions of ice-margin fluctuations from land have revealed the timing of multiple local readvances or standstills throughout the Holocene (e.g. Kelley et al., 2012; Levy et al., 2012; Young et al., 2013a). Studies of the latest Pleistocene and earliest Holocene recession of the GrIS from the western continental shelf reveal asynchronous retreat of ice streams that crossed the continental shelf (e.g. McCarthy, 2011; Ó Cofaigh et al., 2013).

Despite ice margin reconstructions at specific locations or for specific time periods, complete records tracking the ice margin position from the Last Glacial Maximum position to the present are lacking in Greenland. Here, we present a cosmogenic 10Be exposure dating (hereafter 10Be dating) chronology of ice retreat through Disko Bugt, bridging previously published ice margin chronologies.
from the continental shelf and from farther inland in the Disko Bugt region (Weidick et al., 1990; Briner et al., 2010; McCarthy, 2011; Ó Cofaigh et al., 2013; Young et al., 2013a). This record affords a view into past changes in the position of the GrIS in Disko Bugt throughout the Holocene and gives insight into how an ice sheet recedes through large marine embayments.

2. Disko Bugt

Disko Bugt is a large marine embayment situated on the central-west Greenland coast bordered by Baffin Bay to the west and as wide as 50-km-widea strip of ice-free land fringing the GrIS to its east (Fig. 1). At present, Disko Bugt receives ice discharge from Jakobshavn Isbræ, an outlet glacier responsible for ~7% of mass loss and ~10% of iceberg discharge from the GrIS (Bindschadler, 1984; Weidick and Bennike, 2007), as well as from five other marine outlet glaciers. Water depths in Disko Bugt average 200–400 m, with a pronounced southwest–northeast-oriented trough crossing the center of the bay where water depths exceed 600 m. Additionally, a bedrock controlled bathymetric high, expressed subaerially as small island groups, spans the western margin of Disko Bugt. The bathymetric high is bisected south of the island of Nunarsuq by a trough oriented southwest–northeast (Fig. 1). Numerous E–W streamlined bedforms on the floor of Disko Bugt suggest fast flowing ice through Disko Bugt in the past (Ó Cofaigh et al., 2013). This pattern is also expressed on land where glacially-streamlined landscapes suggest the presence of a former ice stream (Roberts and Long, 2005). The landscape south and east of Disko Bugt consists of glacially sculpted Precambrian crystalline bedrock and landforms indicative of extensive glacial erosion (Chalmers et al., 1999; Roberts and Long, 2005). Disko Island forms the northern boundary of Disko Bugt, and is composed of primarily Cretaceous-Tertiary clastic-sediments overlain by Tertiary flood basalts and small outcrops of Precambrian crystalline bedrock (Chalmers et al., 1999).

Funder and Hansen (1996) proposed a two-stage model of deglaciation for the GrIS depicting rapid initial deglaciation from the continental shelf due to rising eustatic sea level, driving the eastward retreat of the GrIS margin to the coast by 10 ka. Following retreat to the coast, eastward movement slowed and was driven primarily by surface ablation. Recent work has refined the timing of deglaciation and subsequent re-advances, though the Funder and Hansen (1996) conceptual model remains largely unmodified. Marine cores from the continental shelf west of Disko Bugt give rise...
to a chronology of retreat from the western shelf break that began by 13,860 ± 90 cal yr BP (core VC34; Fig. 4; all marine radiocarbon ages are calibrated using MARINECAL09 with a ΔR of 140 ± 25 based on http://calib.qub.ac.uk/marine/ and Lloyd et al. (2011) and are presented as the mean ± half the 1-sigma range; Ó Cofaigh et al., 2013), with a brief, but significant, re-advance at 12,370 ± 210 cal yr BP (core VC20; Fig. 4; Ó Cofaigh et al., 2013). Ice subsequently retreated rapidly eastward from the continental shelf by 10,920 ± 140 cal yr BP (core MSM-343300; Fig. 4; McCarthy, 2011; Hogan et al., 2012). High rates of ice-sheet ablation continued between 10.9 ka and 9.5 ka (Jennings et al., 2013), with ice sheet recession out of Disko Bugt by 10,160 ± 210 cal yr BP (core POR-18; Fig. 1; Lloyd et al., 2005).

The terrestrial chronology constraining retreat of ice from the western margin of Disko Bugt exhibits a wide range of ages (Fig. 1; Table 1). Much of the deglaciation constraints are from minimum-limiting radiocarbon ages derived from marine macrofossils and bulk sediments in lake sediment cores. The oldest of these radiocarbon ages comes from southwest of Disko Bugt, where a minimum age of 13,220 ± 130 cal yr BP was derived from bulk sediment in a lake sediment core (Fredskild, 1996). This age has previously been considered dubious because it is at odds with the existing understanding of the local relative sea level history (Bennike and Björck, 2002). Additional basal ages obtained from bulk lake sediment in the area constrain deglaciation to before 10,550 ± 140, 10,360 ± 120, and 10,330 ± 80 cal yr BP (Long and Roberts, 2003; Long et al., 2003). Bivalves in raised marine deposits (18 m asl), south of Sarqardip Nuna, constrain deglaciation prior to 9510 ± 220 cal yr BP (Donner and Jungner, 1975). On Nunarsuq Island, in west-central Disko Bugt, bivalves date to 9190 ± 130 cal yr BP (Bennike et al., 1994), indicating the GrIS had retreated from the mouth of Disko Bugt some time prior to this age.

To the north of Disko Bugt, the deglacial chronology from Disko Island is derived from a basal organic sediment sample in a lake sediment core and numerous shells from raised marine deposits. Geomorphic evidence suggests the possibility of two local advances during what has been termed the Godhavn Stade and Disko Stade.
Fig. 4. Top panel: Time-distance diagram of western Greenland ice margin in Disko Bugt region. All ages from Disko Bugt are shown in Fig. 1. Radiocarbon ages from the continental shelf derived from McCarthy (2011), Ó Cofaigh et al. (2013), and (Quillmann et al., 2009). Bottom panel: composite Landsat image depicting the individual transects and locations used in the time-distance diagram as well as in retreat rate calculations. The dotted line represents the 400 m depth contour. (For interpretation of the references to color in this figure legend, the reader is referred to the web version of this article.)

Table 1
Sample information for previously published deglacial radiocarbon ages from Disko Bugt

<table>
<thead>
<tr>
<th>Sample ID</th>
<th>Ref. to Fig. 1</th>
<th>Latitude (degrees)</th>
<th>Longitude (degrees)</th>
<th>Age (^{14}C yrs BP)</th>
<th>Age (cal yrs BP)^a</th>
<th>Material</th>
<th>Reference</th>
</tr>
</thead>
<tbody>
<tr>
<td>Beta-183253</td>
<td>1</td>
<td>69.5243</td>
<td>-53.7224</td>
<td>9700 ± 100</td>
<td>11,020 ± 210</td>
<td>Bulk Sediment</td>
<td>Long et al., 2011</td>
</tr>
<tr>
<td>K-4567</td>
<td>2</td>
<td>69.3000</td>
<td>-53.2500</td>
<td>9220 ± 130</td>
<td>10,400 ± 150</td>
<td>Shells</td>
<td>Frich and Ingólfsson, 1990</td>
</tr>
<tr>
<td>Hel-2210</td>
<td>3</td>
<td>69.3000</td>
<td>-53.2500</td>
<td>9060 ± 120</td>
<td>9610 ± 150</td>
<td>Shells</td>
<td>Frich and Ingólfsson, 1990</td>
</tr>
<tr>
<td>AAR-5</td>
<td>4</td>
<td>69.2833</td>
<td>-53.3333</td>
<td>9650 ± 250</td>
<td>10,350 ± 320</td>
<td>Shells</td>
<td>Ingólfsson, 1990</td>
</tr>
<tr>
<td>K-3663</td>
<td>5</td>
<td>69.2833</td>
<td>-53.4666</td>
<td>7600 ± 110</td>
<td>8430 ± 110</td>
<td>Shells</td>
<td>Ingólfsson, 1990</td>
</tr>
<tr>
<td>Ua-1086</td>
<td>6</td>
<td>69.2000</td>
<td>-51.0667</td>
<td>8795 ± 130</td>
<td>9070 ± 90</td>
<td>Shells</td>
<td>Weidick and Bennike, 2007</td>
</tr>
<tr>
<td>AA-37711</td>
<td>7</td>
<td>69.1757</td>
<td>-51.8230</td>
<td>9483 ± 65</td>
<td>10,190 ± 80</td>
<td>Foraminifera</td>
<td>Lloyd, 2005</td>
</tr>
<tr>
<td>K-1818</td>
<td>8</td>
<td>69.1000</td>
<td>-51.0667</td>
<td>8630 ± 130</td>
<td>9690 ± 200</td>
<td>Shells</td>
<td>Weidick, 1972</td>
</tr>
<tr>
<td>K-2023</td>
<td>9</td>
<td>69.0167</td>
<td>-51.1333</td>
<td>8680 ± 135</td>
<td>9740 ± 180</td>
<td>Shells</td>
<td>Weidick, 1974</td>
</tr>
<tr>
<td>Ua-4574</td>
<td>10</td>
<td>69.0000</td>
<td>-51.1167</td>
<td>9180 ± 75</td>
<td>9710 ± 130</td>
<td>Shells</td>
<td>Weidick and Bennike, 2007</td>
</tr>
<tr>
<td>RCD-21</td>
<td>11</td>
<td>68.9833</td>
<td>-53.3167</td>
<td>8690 ± 90</td>
<td>9190 ± 130</td>
<td>Mya truncata; Hiatella arctica</td>
<td>Bennike et al., 1994</td>
</tr>
<tr>
<td>AA-35659</td>
<td>12</td>
<td>68.6333</td>
<td>-51.1176</td>
<td>8585 ± 86</td>
<td>9570 ± 90</td>
<td>Bulk Sediment</td>
<td>Long and Roberts, 2002</td>
</tr>
<tr>
<td>AA-39655</td>
<td>13</td>
<td>68.6170</td>
<td>-52.1101</td>
<td>9180 ± 80</td>
<td>10,360 ± 120</td>
<td>Bulk Sediment</td>
<td>Long et al., 2003</td>
</tr>
<tr>
<td>Hel-362</td>
<td>14</td>
<td>68.6000</td>
<td>-52.5666</td>
<td>8970 ± 170</td>
<td>9510 ± 220</td>
<td>Shells</td>
<td>Donner and Jungner, 1975</td>
</tr>
<tr>
<td>K-5133</td>
<td>17</td>
<td>68.4333</td>
<td>-52.9500</td>
<td>11,320 ± 140</td>
<td>13,220 ± 130</td>
<td>Bulk Sediment</td>
<td>Fredskild, 1996</td>
</tr>
</tbody>
</table>

Note: K dates are treated as atmospheric samples because they were originally normalized to 0 per mil PDB, the ΔR correction was made after calibration for these samples. ^a Ages were calibrated using Calib 6.0 and reported as the mean ± 1σ; ages from terrestrial source material are calibrated using INTCAL09; ages from marine source material were calibrated using MARINECAL09 with a ΔR of 140 ± 25 based on http://calib.qub.ac.uk/marine and Lloyd et al. (2011).
The Godhavn Stade is expressed as a discontinuous moraine at the mouth of major valleys along the southwestern margin of Disko Island. The age of the Godhavn Stade is constrained by a minimum limiting age from a shell dating to 10,350 ± 320 cal yr BP, and is believed to represent GrIS expansion from Disko Bugt on to Disko Island during the LGM (Ingólfsson et al., 1990). The Disko Stade is an advance of local Disko Island glaciers expressed as a series of moraines near the valley mouth, which truncate Godhavn Stade moraines on eastern Disko Island. The Disko Stade is dated to ~10 ka, and theorized to be the result of changes in the predominant wind direction and moisture source (Ingólfsson et al., 1990), while others suggest that the advance could be attributed to surging local glaciers (Weidick and Bennike, 2007). At the eastern end of Disko Fjord, on western Disko Island, the oldest age constraint of deglaciation is from bulk lake sediments, which place deglaciation prior to 11,020 ± 210 cal yr BP (all terrestrial radiocarbon ages are calibrated using INTCAL09 using http://calib.qub.ac.uk/marine; Long et al., 2011). Four radiocarbon ages derived from bivalves along the south coast of Disko Island indicate ice-free marine conditions by 10,350 ± 320, 10,400 ± 150, 9,610 ± 150, and 8,430 ± 110 cal yr BP (Frich and Ingólfsson, 1990; Ingólfsson et al., 1990). Overall, the existing chronology suggests the retreat of ice from Disko Island began at ~10 ka, with slightly later retreat occurring along the southern coast at ~9 ka, though it remains unclear whether the chronology pertains to the retreat of the GrIS or retreat of locally sourced glaciers.

The deglacial chronology from eastern Disko Bugt relies on both radiocarbon dating as well as 10Be dating. Radiocarbon ages from near the mouth of Jakobshavn Isfjord yield minimum-limiting constraints on deglaciation of 9070 ± 90 cal yr BP (Weidick and Bennike, 2007) and 9690 ± 2000 cal yr BP (Weidick, 1972). Samples collected ~20 km south of Jakobshavn Isfjord yield similar radiocarbon ages of 9740 ± 180 cal yr BP (Weidick, 1974) and 9710 ± 130 cal yr BP (Weidick and Bennike, 2007). These ages are in agreement with recent 10Be ages, which indicate the landscape near Jakobshavn Isfjord deglaciated at 10.1 ± 0.3 ka (n = 12; Corbett et al., 2011; Young et al., 2011a, 2011b, 2013a). In southeastern Disko Bugt, the timing of deglaciation is derived from 10Be ages and radiocarbon ages from a lake sediment core. The core yields a bulk sediment basal age of 9570 ± 90 cal yr BP (Long and Roberts, 2002), and four 10Be ages from nearby average 9.2 ± 0.1 ka (Fig. 1; Young et al., 2013a).

The existing chronology in and around Disko Bugt constrains deglaciation to ~9–11 ka. However, in most places the timing of deglaciation has not been dated directly. The majority of radiocarbon-dated material is of marine origin, and thus relies on a marine reservoir correction based on modern ocean circulation within Disko Bugt (Lloyd et al., 2011), which may differ from the oceanographic conditions during deglaciation. In addition, many of the radiocarbon ages are from bulk lake sediment samples that have been noted in a number of studies to give erroneous old ages (Kaplan et al., 2002; Bennike et al., 2010), or are from marine organisms which colonize the seafloor some unknown period of time following deglaciation. Here, we report twelve new 10Be ages from four new locations around Disko Bugt, which directly date the retreat of ice from the landscape. We compare these new ages to previously published 10Be and 14C ages to improve the chronology of ice retreat out of Disko Bugt during the early Holocene. The additional 10Be ages connect the comprehensive chronologies of early-to-late Holocene ice margin fluctuation on the Greenlandic mainland to emerging records from the western continental shelf. The combined time-distance history spans from ~14 ka to present, and from the continental shelf break to the present ice margin.
3. Methods

Samples for 10Be dating were collected from glacially sculpted bedrock surfaces ($n=8$) and perched erratic boulders ($n=4$) with a hammer and chisel. Samples were collected from the central portion of boulders and outcrops, away from non-horizontal surfaces, edges, and corners. Latitude, longitude and elevation were collected at all sample locations using a handheld GPS device and topographic shielding was measured using a clinometer. Samples were collected above the local marine limit as indicated by published relative sea level curves (Long and Roberts, 2002, 2003; Long et al., 2006, 2011), and geomorphic evidence such as the presence of raised beaches and washing limits. An exception to this sampling strategy is our collection of samples KE-11-01 and KE-11-02 at ~90 m asl from the highest point on the island of Nunarssuaq, which is below the published marine limit of >95 m for the site (Rasch, 2000). However, local relative sea level curves suggest that rebound was rapid at this time, and thus we expect a negligible age difference for the actual timing of deglaciation and the age of our samples. Nonetheless, 10Be ages from this location should be considered minimum-limiting constraints on the timing of deglaciation.

All samples underwent physical and chemical processing following procedures modified from Kohl and Nishiizumi (1992) at the University at Buffalo Cosmogenic Isotope Laboratory. Samples were crushed and the 425–850 μm size fraction was separated by sieving. Dilute HCl and HNO$_3$–HF acid treatment and heavy liquid mineral separation were used to isolate quartz. Quartz was digested with a known amount of 9Be carrier and Be was isolated by ion-exchange chromatography and selective precipitation with NH$_4$OH. 10Be/9Be AMS measurements were performed at Lawrence Livermore National Laboratory and normalized to standard 07KNSTD3110 with a reported ratio of 2.85 × 10$^{-12}$ (Nishiizumi et al., 2007; Rood et al., 2010). Ratios from process blanks were 6.19 × 10$^{-15}$ and 1.49 × 10$^{-15}$ with AMS precision ranging from 5.4 to 1.8% for blank corrected 10Be/9Be sample ratios.

All 10Be ages (including previously published ages) are calculated using a modified version of the Matlab code developed for the CRONUS-Earth web-based calculator using the regionally calibrated Baffin Bay 10Be production rate of 3.96 ± 0.07 atoms g$^{-1}$ a$^{-1}$ (Young et al., 2013b) and the constant-production scheme of Lal/Stone (Lal, 1991; Stone, 2000) with no corrections made for local isotopic rebound. We use the regionally calibrated Baffin Bay production rate (vs. NENA 10Be production rate of 3.91 ± 0.19 atoms g$^{-1}$ a$^{-1}$; Balco et al., 2009) because ages calculated with the Baffin Bay rate have been demonstrated to agree with independent local radiocarbon evidence, and the Baffin Bay rate minimizes the systematic error contribution from production-rate uncertainties to our 10Be ages. Sample sites are at local high points on the landscape and are inferred to be windspaced, thus no corrections for snow cover have been made. Additionally, glacial polish and striations are abundant on bedrock surfaces throughout the field area, indicating little erosion since ice sheet recession. Thus, we made no corrections for erosion when calculating 10Be ages.

4. Results and interpretation

We calculate twelve 10Be ages from glacially sculpted bedrock surfaces ($n=8$) and perched erratic boulders ($n=4$). Two ages from bedrock samples collected ~10 m apart on Nunarssuaq are 11.6 ± 0.6 ka and 10.7 ± 0.2 ka and average 11.1 ± 0.7 ka (Figs. 1 and 2; Table 3; all averages are the mean ± one standard deviation). Although it is possible that the older age may reflect inherited 10Be from previous exposures, these two ages from the same site overlap at 2-sigma so we opt to calculate their average. At Qeqertarsuaq,
northern Disko Island, one sample from a boulder yields an age of 8.6 ± 0.2 ka, and two bedrock samples yield ages of 9.9 ± 0.2 ka and 10.0 ± 0.2 ka (Figs. 1 and 2; Table 3). We consider the age of 8.6 ± 0.2 ka as an outlier because it is much younger than the other two 10Be ages, as well as a radiocarbon age of 10.4 ± 0.3 ka derived from marine bivalves collected ~5 km to the east (Ingólfsson et al., 1990). Thus, the two ages from the Qeqertarsuaq site average 10.0 ± 0.1 ka. On the southern margin of Disko Bugt, on the island of Sarqardîp Nuna, four 10Be ages are calculated from samples collected at three sites along transect extending 5 km to the south from the northern coast of the island (Fig. 3). A boulder sample from the northernmost site yields a 10Be age of 11.0 ± 0.2 ka (Figs. 1 and 2; Table 3). To the south, a boulder sample collected at the middle site of the transect provides a 10Be age of 10.9 ± 0.2 ka (Figs. 1 and 2; Table 3). At the southernmost transect site, bedrock and boulder samples located ~10 m apart yield 10Be ages of 10.6 ± 0.3 ka and 10.2 ± 0.2 ka, respectively (Figs. 1 and 2; Table 3); the average age from the southernmost site is 10.4 ± 0.3 ka. At Qasigiannguit, in eastern Disko Bugt, 40 km south of Jakobshavn Isfjord, 10Be ages derived from two bedrock samples and one boulder sample are 10.5 ± 0.3 ka, 10.4 ± 0.2 ka, and 9.7 ± 0.4 ka respectively. The younger of these ages, 9.7 ± 0.4 ka, is from a sample collected at ~200 m lower in elevation than the older two samples (Table 3). The difference in ages may reflect thinning of the ice margin at this location during deglaciation. However, for an age of deglaciation of the Qasigiannguit area we use an average age of 10.2 ± 0.4 ka (n = 3; Figs. 1 and 2; Table 3).

5. Discussion

5.1. Deglaciation of Disko Bugt

Samples collected from four localities on the perimeter of Disko Bugt, combined with previously published 10Be ages from the eastern coast of Disko Bugt, outline a pattern of initial ice retreat out of central Disko Bugt with later recession along the margins. The oldest 10Be ages are from Nunnarsuq, where two ages average 11.1 ± 0.7 ka and provide a closer constraint on deglaciation than a minimum limiting radiocarbon age of 1910 ± 130 cal yr BP from the site (Fig. 1; Bennike et al., 1994). A similar age of 11.0 ± 0.2 ka was determined for the northernmost site (most proximal to Disko Bugt) in the Sarqardîp Nuna transect. The remaining ages from the Sarqardîp Nuna transect decrease in age toward the south. Radiocarbon ages from south of Sarqardîp Nuna range from 10,550 ± 140 to 9510 ± 220 cal yr BP (n = 4; Fig. 1; Donner and Jungner, 1975; Long and Roberts, 2003) and further corroborate ice recession occurring later to the south of Disko Bugt than in central Disko Bugt.

On southern Disko Island at Qeqertarsuaq 10Be ages that average 10.0 ± 0.1 ka (n = 2) indicate later deglaciation than in central-western and central-southern Disko Bugt. One interpretation for these younger ages is that ice lingered on Disko Island following recession of the GrIS from Disko Bugt, fed by local ice caps on the high plateaus covering much of Disko Island. It is also possible that the relatively young 10Be ages is evidence of the Disko Stade advance (Ingólfsson et al., 1990), although no other evidence of the Disko Stade advance has been found on western Disko Island. Our 10Be ages overlap within error with radiocarbon ages from the southern coast of Disko Island that range from 10,400 ± 150 to 8430 ± 110 cal yr BP (n = 4; Fig. 1; Frich and Ingólfsson, 1990; Ingólfsson et al., 1990).

At Qasigiannguit, in eastern Disko Bugt, the average 10Be age of 10.2 ± 0.4 ka (n = 3; Fig. 1) overlaps within error with the average 10Be age of deglaciation from the Ilulissat area of 10.1 ± 0.3 ka (n = 12; Corbett et al., 2011; Young et al., 2013a) and is older than 10Be ages constraining deglaciation in southeastern Disko Bugt at 9.2 ± 0.1 ka (n = 4; Young et al., 2013a). The ages from eastern Disko Bugt suggest that deglaciation in east-central Disko Bugt occurred first, and then later in southeastern Disko Bugt. Radiocarbon ages of 9740 ± 180 and 9710 ± 1300 cal yr BP (Weidick, 1974; Weidick and Bennike, 2007) from 25 km north of Qasigiannguit, and 9570 ± 90 cal yr BP (Long and Roberts, 2002) from 20 km south of Qasigiannguit, provide minimum limiting constraints on deglaciation and support our 10Be ages. A sedimentological shift observed in a marine sediment core from offshore of Disko Bugt indicates a pronounced decrease in ice-rafted debris at ~10 ka (core MSM-343340), and correlates to the time when ice retreated out of central Disko Bugt and onto the mainland (McCarthy, 2011).

The pattern of ages suggests ice receded out of central Disko Bugt first near Jakobshavn Isfjord, with the timing of ice recession later along the mainland south of Disko Bugt. The spatial pattern of ice retreat may be explained in part by the bathymetric configuration of Disko Bugt (Fig. 1), with more rapid ice retreat occurring in areas of deeper water in central Disko Bugt. Here, ice may have been more vulnerable to collapse as it retreated into deeper water with a widening bay geometry (Nick et al., 2010; Enderlin et al., 2013). Conversely, ice retreat may have been slower along southeastern Disko Bugt as the ice resided in relatively shallow water. This conceptual model of deglaciation is corroborated by acoustic profiles from Disko Bugt. The lack of significant sediment accumulation in the western and central bay suggests that central Disko Bugt deglaciated rapidly without major standstills or re-advances (Hogan et al., 2012).

5.2. Retreat rates

Ice-margin retreat rates through Disko Bugt can be estimated from our 10Be chronology. We calculate maximum and minimum possible retreat scenarios based on the average age of deglaciation with full consideration of the standard deviation of the average age at strategic locations. We exclude the Disko Island ages from the calculation of GrIS retreat rates, as our ages from Disko Island may constrain the retreat of locally sourced glaciers rather than that of the GrIS. The retreat of the GrIS margin 90 km from western Disko Bugt (10.8 ± 0.5; n = 6) to eastern Disko Bugt (9.9 ± 0.5; n = 19) yields rates that range from instantaneous (beyond the resolution of our 10Be chronology) to 50 m a⁻¹. However, closer inspection of the 10Be chronology demonstrates that the GrIS retreated onto land along the southeastern margin of Disko Bugt, while the retreat of ice onto land occurred earlier the Jakobshavn and Qasigiannguit areas. The spatial variability in the retreat rate is further examined by sub-dividing Disko Bugt into a southern and central section (Fig. 4). Retreat of 90 km in the central section of Disko Bugt, from Nunnarsuq and the northern site at Sarqardîp Nuna (11.1 ± 0.5; n = 3) to the eastern coast of Disko Bugt at Jakobshavn Isfjord and Qasigiannguit (10.1 ± 0.3; n = 15) occurred at a rate of between ~50 and 450 m a⁻¹. In contrast, the GrIS receded the 70 km from the southern site at Sarqardîp Nuna (10.4 ± 0.3 n = 2) to southeastern Disko Bugt (9.2 ± 0.1; n = 4) at a rate between ~50 and 70 m a⁻¹.

Our compilation of 10Be and radiocarbon ages reveals rapid retreat of the GrIS margin through Disko Bugt. Retreat rates ranging from ~50 to 450 m a⁻¹ for central Disko Bugt overlaps the range of 22–275 m a⁻¹ retreat rates reported from the nearby continental shelf (Ó Coagain et al., 2013) following a re-advance at 12.3 ka, and is equal to or faster than the ~100 m a⁻¹ reconstructed for the deglaciation of Jakobshavn Isfjord by sub-dividing Disko Bugt into a southern and central section (Young et al., 2011b). Ice retreat through Disko Bugt is also estimated to be equal to or faster than at Seramilik Fjord in southeast Greenland (≥80 m a⁻¹; Hughes et al., 2012) and at Sam Ford Fjord on Baffin Island (>58 m a⁻¹; Briner et al., 2009). On the west coast
of Norway, Mangerud et al. (2013) estimate retreat rates of 240—370 m a$^{-1}$, and suggest that this is near the maximum possible retreat rates in a long fjord system. If retreat rates within central Disko Bugt are at the upper end of the range we calculate then they may have been faster than rates reported for other fjord systems, and may have even resembled the rapid break-up of ice shelves in the western Antarctica Peninsula (Scambos et al., 2004).

5.3. Deglaciation from the continental shelf to the present ice margin

In this section, we describe the reconstruction of a time-distance history of the western GrIS in the Disko Bugt region from the continental shelf break to the present ice margin (Fig. 4). The earliest constraints on deglaciation of the western margin of the GrIS are from marine sediment cores collected from trough mouth fans at the edge of the continental shelf (Ó Cofaigh et al., 2013). These cores reveal that GrIS retreat from the continental shelf initiated by 13,860 ± 90 cal yr BP (core VC34; Ó Cofaigh et al., 2013). Following a re-advance at 12,230 ± 130 cal yr BP (core VC20; Ó Cofaigh et al., 2013), the ice margin continued to retreat across the continental shelf with recession off the inner shelf occurring by 10,520 ± 140 cal yr BP (Fig. 3; MSM-343300; Quillmann et al., 2009).

The timing of western Disko Bugt deglaciation at 10.8 ± 0.5 ka is similar to an age on deglaciation of 10,920 ± 140 cal yr BP from the nearby continental shelf (60 km southwest; core MSM-343300; Quillmann et al., 2009). This similarity implies little pause, or slowdown, during deglaciation from the western Greenland shelf and into Disko Bugt. Following ice retreat out of Disko Bugt, the GrIS deposited the Fjord Stade moraines during re-advances in 9.3 and 8.2 ka (Weidick and Bennike, 2007; Young et al., 2011a, 2013a). Following these re-advances, the GrIS retreated to a location at or behind its latest Holocene ice margin by ~7.4 ka near Jakobshavn Isfjord and ~7.0 ka in southeastern Disko Bugt (Young et al., 2011b, 2013a). The GrIS remained behind its present margin throughout the middle Holocene, and radiocarbon-dated lake sediments from a threshold lake basin reveal that the GrIS achieved its minimum mid-Holocene extent at or by 5770 ± 110 cal yr BP (Briner et al., 2010). At Jakobshavn Isfjord, the GrIS was approaching the latest Holocene configuration by ~2.3 ka, achieved its late Holocene maximum around 0.4 ka (Briner et al., 2010), and began retreating by 1850 AD (Cathro et al., 2008). In southeast Disko Bugt, the ice margin neared its latest Holocene maximum position by ~0.3 ka, and culminated in its maximum extent during the late 20th century (Kelley et al., 2012).

5.4. Forcing mechanisms

In evaluating possible forcing mechanisms for rapid retreat of the GrIS from Disko Bugt, two end member scenarios are possible: 1) the retreat of the GrIS was climatically driven by increasing air and ocean temperatures, and 2) ice dynamic factors independent of climatic forcing drove the recession. Retreat of the GrIS from Disko Bugt occurred during a period of ocean and climatic warming, as well as ice sheet thinning. Arctic summer temperatures on Baffin Island (~600 km west) increased 2–4 °C between 11 and 10 ka (Fig. 5; Axford et al., 2009). In addition, evidence of relatively warm Atlantic-derived water reaching northern Baffin Bay just after 10.9 ka implies increased advection of Atlantic water into Baffin Bay around the time of ice retreat from Disko Bugt (Knudsen et al., 2008). Further evidence of a warming Baffin Bay is derived from the presence of driftwood in southwest Greenland dated to 10.8 ± 0.4 ka indicating ice free conditions for part of the year (Weidick, 1975). Estimates of ice sheet elevation change from the GRIP and DYE-3 ice cores indicate that accelerated thinning of the GrIS occurred between 11 and 10 ka (Fig. 5; Vinther et al., 2009). This evidence of ameliorating climate provides a possible mechanism for GrIS retreat during the early Holocene.

Evidence for the role of ice dynamics on ice sheet retreat comes from a comparison of the deglaciation of the Disko Bugt area to that of the Uummannaq Fjord system and cross-shelf trough to the north (~220 km). A major difference between the two glacier systems is their geometry, with Disko Bugt exhibiting a widening and bathymetrically deepening geometry from west to east, while Uummannaq is much narrower and bathymetrically deeper, with numerous islands (McCarthy, 2011). Recent investigations of the Uummannaq trough suggest that deglaciation commenced from the continental shelf at ~14.8 ka, ~1000 years earlier than offshore of Disko Bugt (Ó Cofaigh et al., 2013; Roberts et al., 2013). Ice sheet retreat also progressed differently between the two systems, with the ice sheet well within the main fjord at Uummannaq by 12.4 ka, into the inner fjords by 10.8 ka and likely behind its present position at Store Gletscher by 8.7 ka (Roberts et al., 2013). This asynchronous initiation and evolution of ice sheet retreat between the two neighboring systems suggests a local ice dynamic influence on ice sheet recession.

We postulate that climatic factors created a situation in Disko Bugt where the western margin of the GrIS became more susceptible to rapid retreat driven by ice dynamics. As the GrIS thinned, buoyancy may have increased, and was exacerbated by basal melt due to contact with warming ocean water. As buoyancy of the marine-based section of the GrIS increased, the margin may have lost contact with the bathymetric high spanning the mouth of Disko Bugt, which acted as a pinning point. This change could have led to accelerated calving as the basin geometry widens from west to east, prompting rapid recession of the ice margin from deep,
central Disko Bugt to a more stable configuration along southern and eastern coasts of Disko Bugt (Enderlin et al., 2013). This proposed scenario is supported by sedimentological data from the marine cores that suggest calving was a major factor in the early Holocene retreat of the GrIS from the continental shelf (Jennings et al., 2013).

6. Conclusions

New 10Be ages from around Disko Bugt, western Greenland, place the deglaciation of western Disko Bugt at 10.8 ± 0.5 ka, with the ice margin reaching the eastern coast of Disko Bugt near Ilulissat at 10.1 ± 0.3 ka and in southeastern Disko Bugt at 9.2 ± 0.1 ka. This chronology yields a retreat rate between ~50 and 450 m a⁻¹ across central Disko Bugt. This rate indicates that ~25% of the overall retreat between the shelf edge and the current position occurred in as little as 700 years. We suggest this retreat was the result of internal ice dynamics acting upon an ice sheet driven out of equilibrium by climatic factors. These findings further emphasize the ability of marine sectors of ice sheets to change rapidly due to ice dynamics in warming climates (e.g. Kjær et al., 2012). Our chronology fills a gap in the current understanding of the early Holocene behavior of the GrIS in Disko Bugt, and provides a dataset that completes a history of a western GrIS margin spanning from the continental shelf to the present ice position, and from the latest Pleistocene through the Holocene.

Acknowledgments

This work greatly benefited from high precision 10Be measurements from Lawrence Livermore National Laboratory by Susan Zimmerman and Robert Finkel. We appreciate laboratory assistance from Michael Badding and Sarah Lavin. We are grateful for the reviews of A. Jennings and A. Hughes, whose comments improved this manuscript. This research was funded by a Geologic Society of America graduate student grant and grant NSF-1156361 from the U.S. National Science Foundation Program of Geography and Spatial Science.

Appendix A. Supplementary data

Supplementary data related to this article can be found at http://dx.doi.org/10.1016/j.quascirev.2013.09.018.

References

Cromer et al., 2013).

