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ABSTRACT

This paper reviews current understanding of deglaciation in North, Central and South America from the Last
Glacial Maximum to the beginning of the Holocene. Together with paleoclimatic and paleoceanographic data,
we compare and contrast the pace of deglaciation and the response of glaciers to major climate events. During
the Global Last Glacial Maximum (GLGM, 26.5-19 ka), average temperatures decreased 4° to 8°C in the
Americas, but precipitation varied strongly throughout this large region. Many glaciers in North and Central
America achieved their maximum extent during the GLGM, whereas others advanced even farther during the
subsequent Heinrich Stadial 1 (HS-1). Glaciers in the Andes also expanded during the GLGM, but that advance
was not the largest, except on Tierra del Fuego. HS-1 (17.5-14.6 ka) was a time of general glacier thickening and
advance throughout most of North and Central America, and in the tropical Andes; however, glaciers in the
temperate and subpolar Andes thinned and retreated during this period. During the Bglling-Allergd interstadial
(B-A, 14.6-12.9 ka), glaciers retreated throughout North and Central America and, in some cases, completely
disappeared. Many glaciers advanced during the Antarctic Cold Reversal (ACR, 14.6-12.9 ka) in the tropical
Andes and Patagonia. There were small advances of glaciers in North America, Central America and in northern
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South America (Venezuela) during the Younger Dryas (12.9-11.7 ka), but glaciers in central and southern South
America retreated during this period, except on the Altiplano where advances were driven by an increase in
precipitation. Taken together, we suggest that there was a climate compensation effect, or ‘seesaw’, between the
hemispheres, which affected not only marine currents and atmospheric circulation, but also the behavior of
glaciers. This seesaw is consistent with the opposing behavior of many glaciers in the Northern and Southern

Hemispheres.

1. Introduction

This paper focuses on the evolution of glaciation in the Americas
during the Last Glacial Termination. The American continents extend
15,000 km from 70°N to 55°S and are characterized on their Pacific
margins by mountain ranges that are continuous over this distance and,
in most cases, now have glaciers or had them during the last glacial
period of the Pleistocene. Knowledge of the activity of these glaciers has
increased enormously in recent years (Palacios, 2017). This knowledge
provides us an opportunity to study how American glaciers behaved
during the Last Glacial Termination in the context of the asynchronous
climatic setting of the two hemispheres. The largely north-south or-
ientation and nearly continuous extent of mountain ranges in the
Americas provide a unique opportunity to understand synoptic latitu-
dinal variations in global paleoclimate.
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The Last Glacial Termination is generally considered to span the
time period between the Global Last Glacial Maximum (GLGM) and the
beginning of the current interglacial period, the Holocene (Cheng et al.,
2009; Denton et al., 2010). It has also been referred to as Termination I,
given that it is the last in a series of similar transitions between Pleis-
tocene glacials and interglacials (Emiliani, 1955; Broecker and van
Donk, 1970; Cheng et al., 2009; Deaney et al., 2017).

The motivation for this review paper is that there have been few
attempts to summarize, synthesize, and compare evidence for late
Pleistocene glacier activity across the entire extent of the Americas. Our
objective is to review current understanding of the evolution of glaciers
in both North and South America throughout the Last Glacial
Termination and discuss whether the contrasts between the hemi-
spheres implied by paleoclimatic and paleooceanographic models are
reflected in the behavior of the glaciers. Given the continuous nature of
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Fig. 1. Locations of the main sites in North and Central America cited in the text.
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the processes involved in the planet’s recent glacial history, parsing
deglaciation into periods requires simplification of the climatic me-
chanisms. Different and opposite changes may occur at different lati-
tudes, with variable response times. In the present article, we have
however selected deglaciation phases in accordance with the current
state of knowledge and with scientific tradition.

Section 2 introduces the study regions and then summarizes how
each of the regions has responded to major climatic changes caused by
the different forcings that drove deglaciation. Section 3 presents the
methods that we have used in this work to select study areas, represent
graphically the glacial evolution of each area, and compare glacial
chronologies and paleoclimatic aspects of areas. Section 4 reviews the
spatial and temporal variability of the GLGM in the Americas. The next
sections review the behaviors of these glaciers during deglaciation,
notably the Heinrich 1 Stadial (HS-1) (Section 5), the Bglling-Allergd
(B-A) interstadial and the Antarctic Cold Reversal (Section 6), and the
Younger Dryas (YD) (Section 7). These sections are followed by a dis-
cussion (Section 8) in which we: 1) consider uncertainties in numeric
ages obtained on glacial landforms (Section 8.1); 2) summarize
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knowledge of climate evolution during the Last Glacial Termination
based on research on marine sediments and polar ice cores (Section
8.2); 3) compare our results with the climatic evolution summarized in
Section 8.2; and 4) compare our results with published research on
glacier activity on other continents during the Last Glacial Termination
(Sections 8.3 to 8.5).

2. Study areas

Our review proceeds from north to south (Figs. 1 and 2). The study
begins with the Laurentide Ice Sheet (LIS) (Fig. 1), which contributed
most to sea-level rise during the Last Glacial Termination (Lambeck
et al., 2014) and was capable of greatly disrupting the coupled ocean-
atmosphere system during deglaciation (Broccoli and Manabe, 1987a;
Heinrich, 1988; Clark, 1994; Barber et al., 1999; Hemming, 2004). We
summarize the most recent syntheses about LIS deglaciation (Dyke,
2004; Stokes, 2017), enabling comparisons with deglaciation in the
American mountains. Alaska is traversed by high mountains and was
only partially glaciated during the GLGM. We examine this region as an
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Fig. 2. Locations of the main sites in South America cited in the text.
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unusual example of mountain glaciation at northern high latitudes
(Briner et al., 2017). We next describe the Cordilleran Ice Sheet (CIS) in
southwestern Canada and adjacent United States, from roughly 48°N to
52°N, which removed or buried much of the preceding alpine glacial
record (Clague, 2017), and the North Cascades in Washington State
from 47°N to 49°N, which provide an excellent record of the early part
of the Last Glacial Termination (Porter, 1976; Porter et al., 1983; Riedel
et al., 2010; Riedel, 2017). The climate of these areas is strongly in-
fluenced by the location of the northern westerlies.

There was widespread alpine glaciation in the central sector of
western North America: to the west in the Sierra Nevada Mountains in
California; to the east in the Rocky Mountain/Yellowstone region, and
in between the numerous mountain ranges of the Basin and Range
Province (Fig. 1). Glaciation in the western U.S. has been the subject of
numerous recent studies (Licciardi et al., 2001, 2004; Munroe et al.,
2006; Licciardi and Pierce, 2008; Refsnider et al., 2008; Thackray,
2008; Laabs et al., 2009; Young et al., 2011; Shakun et al., 2015b;
Leonard et al., 2017a, 2017b; Licciardi and Pierce, 2018; Dahms et al.,
2018, 2019). In the interior, we mainly focus on the greater Yellow-
stone glacial system and adjacent mountain ranges around 44-45°N
where new glacial syntheses are available (Larsen et al., 2016; Licciardi
and Pierce, 2018; Pierce et al., 2018; Dahms et al., 2018; D’Arcy et al.,
2019); and the Rocky Mountains of Colorado at 37-41°N, for which
there are also some recent contributions (Ward et al., 2009; Young
et al., 2011; Leonard et al., 2017a, 2017b; Brugger et al., 2019). The
Sierra Nevada, from 36° to 38°N, is one of the most-studied mountain
ranges in North America, and numerous syntheses have been written on
its glacial history (Gillespie and Zehfuss, 2004; Gillespie and Clark,
2011; Phillips, 2016, 2017).

Southward, the combined effects of lower elevation and higher ELA
result in the limited presence of glacial landforms in the southern
United States and northern Mexico. However, in central Mexico, at
about 19°N, the high volcanoes (> 5000 m above sea level, asl) of the
Trans-Mexican Volcanic Belt were glaciated (Fig. 1). Elevations de-
crease again in southern Mexico, and there are two mountain ranges in
Central America (> 3800 m asl) that hosted glaciers during the Late
Pleistocene: Sierra Altos Cuchumatanes in Guatemala and the Cordil-
lera de Talamanca in Costa Rica. There are some recent syntheses of the
glacial history of central Mexico (Vazquez-Selem and Heine, 2011;
Vazquez-Selem and Lachniet, 2017) and the Central American glaciated
ranges (Lachniet and Seltzer, 2002; Roy and Lachniet, 2010;
Cunningham et al., 2019; Potter et al., 2019). Lachniet and Vazquez-
Selem (2005) and Vazquez-Selem and Lachniet (2017) recently sum-
marized the history of Quaternary glaciation for this entire region.

In South America (Fig. 2), the crest and high valleys of the Andes
from the north at 11°N to the south at 55°S (a distance of over 7200 km)
were glaciated during the last glacial cycle. The northern Andes are
located between latitudes 11°N and 4°S, and include ranges in Vene-
zuela, Colombia, and Ecuador. The Venezuelan Andes consist of two
main ranges oriented northeast to southwest between 7°N and 10° N,
named Sierra de Perijé and the Mérida Andes; the latter contains
abundant glacial landforms and extant glaciers. Numerous dating stu-
dies have been performed on glacial landforms in that region (e.g.
Schubert, 1974; Bezada, 1989; Mahaney et al., 2000; Dirszowsky et al.,
2005; Wesnousky et al., 2012; Angel et al., 2013, 2016, 2017; Carcaillet
et al, 2013; Guzman, 2013; Angel, 2016;). The Colombian Andes
consist of three parallel ranges extending from 1°N to 11°N: the Cor-
dillera Occidental (western), Cordillera Central and Cordillera Oriental
(eastern). Studies have been carried out in the Cordillera Central and
Cordillera Oriental involving radiocarbon dating of paleosols and gla-
ciofluvial and glacial sediments, and more recently surface exposure
10Be dating (Thouret et al., 1996; Clapperton, 2000; Helmens, 2004,
2011; Jomelli et al., 2014). The Ecuadorian Andes extend from 1°N to
4°S and include the Eastern and Western Cordilleras. Glaciation studies
in these ranges have relied mainly on radiocarbon dating of glaciola-
custrine and till sediments (Clapperton et al., 1997a; Rodbell et al.,
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2002; La Frenierre et al., 2011).

The central Andes extend the length of Peru, western Bolivia and
northern Chile, and comprise two parallel ranges in which the highest
areas have glacial landforms and extant glaciers (Fig. 2). Databases
have been compiled to inform paleoclimate modeling and to compare
glacier activity in Peru and Bolivia (e.g. Mark et al., 2005). Cosmogenic
nuclide exposure dating methods have improved knowledge of Late
Pleistocene glacial evolution, but there are significant challenges in
interpreting the data (Smith et al., 2005, 2008; Zech et al., 2008;
Glasser et al., 2009; Licciardi et al., 2009; Rodbell et al., 2009; Smith
and Rodbell, 2010; Blard et al., 2013a and b; Jomelli et al., 2011, 2014;
Bromley et al., 2016; Martin et al., 2018). Several other studies in this
region focus on the time of deglaciation (He et al., 2013; Shakun et al.,
2015b; Stansell et al., 2015, 2017). A recent synthesis of Late Pleisto-
cene glacial evolution has been published for the entire region (Mark
et al.,, 2017), and this review has since been complemented by addi-
tional paleoglacier chronologies (Ward et al., 2017; Martin et al., 2018)

In southern Peru (Fig. 2), western Bolivia and northern Chile, the
western Andean range marks the west edge of the Altiplano and Puna
Plateau, a closed basin that contains the great lakes of Titicaca (3806 m
asl), Poop6 (3685 m asl), and Salar de Uyuni (3653 m asl). Here, typical
elevations are 4000-5000 m asl; the basin is surrounded by the Western
and the Eastern Andes, where large volcanoes reach elevations greater
than 6000 m asl. In the north of this area, precipitation is delivered
mainly by the South American monsoon in the summer months, but to
the south, this gives way to extratropical systems related to the
southern westerly winds in austral winter. This transition region, be-
tween 18°S and 30°S, is an area of persistent aridity known as the Arid
Diagonal (De Martonne, 1934).

The western cordillera of the Andes in northern Chile crosses the
Arid Diagonal between 18°S and 27°S (Fig. 2). Between Nevado Sajama
(18.1°S) and Cerro Tapado (30.2°S), there are few modern glaciers
because of limited precipitation (Casassa et al., 2007), but glacial de-
posits can be mapped as far south as ~24°S on the north side of the Arid
Diagonal and as far north as 27°S on the south side (Jenny et al., 1996).
A few small rock glaciers and permanent snowfields exist on very high
peaks throughout the Arid Diagonal, where ELAs reach > 6000 m asl
(Ward et al., 2017).

Moving farther south to the northern part of the Argentine Andes
between 22°S and 36°S (Fig. 2), there are two different atmospheric
circulation patterns, which again are separated by the Arid Diagonal.
The Arid Diagonal crosses this section of the Andes between 25°S and
27°S. Most of the precipitation north of the Arid Diagonal falls during
the South American summer monsoon season. South of the Arid Diag-
onal precipitation falls mainly during the austral winter months and is
related to southerly sourced westerly winds. The locations where most
precipitation is related to the South American summer monsoon are
Tres Lagunas (Zech et al., 2009), Nevado de Chani (Martini et al.,
2017), Sierra de Quilmes (Zech et al., 2017), and Sierra de Aconquija
(D’Arcy et al., 2019). The locations where most precipitation is related
to the southern westerlies are: the Ansilta range (Terrizzano et al.,
2017), Cordon del Plata (Moreiras et al., 2017) and Las Lenas valley
(Zech et al., 2017). Reviews of the glacial chronology of the entire re-
gion were carried out by Zech et al. (2017) and more recently by D’Arcy
et al. (2019).

From 36°S to the southernmost tip of South America, the Patagonian
Andes are a complex mountainous region with numerous present-day
glaciers and two large ice fields (Campo de Hielo Patagénico Norte and
Sur) (Fig. 2). Mapping of major moraine systems throughout Patagonia
and early geochronological work have provided a broad framework that
underpins our knowledge of the glacial history of this region (e.g.,
Caldenius, 1932; Mercer, 1976). During the GLGM, there was a large ice
sheet, the Patagonian Ice Sheet (PIS), that extended 2000 km along the
crest of the range, from 38°S to 55°S. With the exception of northern
Patagonia, the western outlet glaciers of the Patagonian Ice Sheet ter-
minated in the Pacific Ocean, whereas eastern outlets terminated on
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land. The deglaciation chronology and pattern of land-terminating
outlets of the PIS have been the subject of much research (Denton et al.,
1999; Glasser et al., 2004, 2008; Kaplan et al., 2008; Moreno et al.,
2009; Rabassa and Coronato, 2009; Rodbell et al., 2009; Hein et al.,
2010; Harrison and Glasser, 2011; Boex et al., 2013; Mendelova et al.,
2017).

The southern tip of South America, from the Strait of Magellan to
Cape Horn, comprises hundreds of islands (Fig. 2). The largest island,
Isla Grande de Tierra del Fuego, is dominated on its west side by the
Cordillera Darwin, a mountain range with peaks over 2000 m asl. This
range is currently covered by large glaciers, some of which reach the
sea. The climate of Tierra del Fuego is strongly affected by the southern
westerlies, and precipitation declines rapidly from the Pacific to the
Atlantic coast. Hall et al. (2017a) and Hall et al. (2019) published re-
cent syntheses of the glacial history of Tierra del Fuego during Last
Glacial Termination and the Holocene, respectively.

3. Methods
3.1. Selection of studies in each area

It is impossible to include all available information on the degla-
ciation of the Americas in detail in a single review paper. However, this
does not preclude us from carrying out a comparative analysis of the
Late Glacial history of the two continents based on recent advances in
knowledge that we seek to provide here. With this objective in mind,
we selected regions where studies of Late Glacial history are most ad-
vanced and geographically representative. For each selected region, we
review recent publications that are key to understanding the glacial
history from the Last Glacial Maximum to the beginning of the
Holocene, including the most up-to-date review papers or syntheses
from specific regions.

3.2. Graphical expression of glacier extent for each interval

The figures in this paper illustrate generalised glacier extent for
each of the intervals discussed below (Figs. 3, 4, 5, 6, and 7). A common
metric is required to compare glacier advances and extent across the
vast area of the Americas. Many researchers consider the Equilibrium
Line Altitude (ELA) to be the best measure of climate-driven changes in
glacier extent (Rea, 2009), although it may introduce errors in paleo-
climatic reconstructions in active tectonic mountain ranges (Mitchell
and Humphries, 2015) and is perhaps less helpful for large continental
ice sheets. We are unable to use ELA in our review for three reasons.
First, many studies do not report ELAs for glacial events. Second, the
ELAs reported in the papers we surveyed were calculated using dif-
ferent methods and thus may not be comparable between regions.
Third, reported ELAs are generally local values and may not be re-
presentative of regional climate. For example, an ELA reconstructed for
a heavily shaded glacier in a north-facing cirque in the Northern
Hemisphere will yield a much lower value than one reconstructed for
an exposed glacier on the south side of the same mountain. To be
quantitatively useful, both of these must be normalized to the climatic
ELA - the zero-mass-balance elevation of a horizontal unshaded sur-
face. To evaluate the climatic ELA, one must model the mass balance of
the glacier using a digital elevation representation of the basin. Mod-
eling the physical mass balance of a large number of glaciers spanning
the entire Americas is beyond the scope of this paper.

We therefore use a simple, easy-to-compute metric that is based on
observational data — the relative extent of a glacier (Et), expressed as a

percel642) ntage and quantified as follows:

Z, — Zp
E (%) = ———
T Zuem - 2

where Z, is the elevation of the glacier terminus during the period in
question, Zp is the elevation at the end of the Little Ice Age, prior to the
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anthropogenic period, and Zyjgy is the terminal elevation at the Local
Last Glacial Maximum (LLGM). For areas that have no historic glaciers,
we use the highest elevation in the catchment as a default value for Zp.
In the figures, we have grouped E; values for each climate region in 20%
intervals. Some ice masses, notably the Laurentide and Patagonian ice
sheets, did not uniformly descend downslope from high-elevation ac-
cumulation areas, but rather expanded from higher elevation accumu-
lation across vast expanses of relatively flat terrain. For these areas, we
used the terminal position (in kilometers) relative to the late Holocene,
or final, position as a metric of relative extent.

3.3. ELA depression in the Americas

In the text and tables, we refer to the approximate decrease in ELA
for each period with respect to the current ELA. We acknowledge that
glacier extents can be affected by hypsometry, but in this broad review
paper and, as noted above, we are not in a position to perform original
mass-balance modeling of a large number of glaciers spanning the en-
tire Americas, which itself could be the subject of a large research
project. ELA depression data included in our tables are based on cited
peer-reviewed papers. The values should be considered approxima-
tions, but are useful for comparing how glaciers in each region re-
sponded to climate during each of the periods we discuss and for testing

(a) LGM (26-21 ka)
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Glacial Extent

. 100-80%

80-60%

60-40%
40-20%
 20-0%

Insufficient Data

Fig. 3. Glacier extent during the Global Last Glacial Maximum in the Americas.
Coloured areas represent regions containing glaciated mountain ranges and in
many cases are, for purposes of visibility, much larger than actual glaciated
areas. AK = Alaska, BC = British Columbia (Cordilleran Ice Sheet and northern
Cascades), CS = central/southern Cascades, SN = Sierra Nevada, NRM =
northern Rocky Mountains, SRM = southern Rocky Mountains, MX = Mexico,
CA = Central America, NA = Northern Andes, PB = Peru/Bolivia, NCA =
north-central Andes, ACA = arid central Andes, PA = Patagonia, TdF = Tierra
del Fuego. The coastline corresponds to the GLGM sea-level low. Figure in-
formation comes from author interpretations and refecences cited in Table 1.
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(b) H1 (16.8-14.7 ka)... . .

Glacial Extent

. 100-80%
. 80-60% %,

60-40%

40-20%

. 20-0%

. Insufficient Data

Fig. 4. Glacier extent during H-1 in the Americas. See Figure 3 for full caption.
Figure information come from author interpretations and refecences cited in
Table 2.

hypotheses of the large-scale driving mechanisms.

3.4. Sources of uncertainty in dating glacial landforms

Our work compares chronological data obtained over recent dec-
ades through cosmogenic nuclide, surface-exposure dating methods.
New scaling models and reference production rates have considerably
changed the interpretation and chronological framing of many glacial
landforms in recent years (e.g. Kaplan et al., 2011; Blard et al., 2013a,
2013b; Kelly et al., 2015; Martin et al., 2015; Martini et al., 2017a;
Borchers et al.,, 2016; Marrero et al., 2016; Phillips et al., 2016).
However, the degree of uncertainty in the production rates of most
terrestrial cosmogenic isotopes, especially those that do not derive from
quartz, can be greater than the amount of time separating many of the
phases of deglaciation (Marrero et al., 2016), making it difficult to re-
late a glacier landform to a particular short period in the past. Never-
theless, we account for these differences by identifying scaling factors
explicitly or providing citations to relevant publications that allow the
reader to be informed.

Other possible problems may compromise the validity of cosmo-
genic nuclide exposure ages. Exposure ages can be misleading if the
dated glacial landforms are found to have had previous exposure to
radiation or have been eroded out of till subsequent to glacier retreat
(Blard et al., 2014; Briner et al., 2016; Ciner et al., 2017). Many of the
dated glacial landforms discussed in this review are boulders on the
crests of moraines, and their apparent ages must be interpreted in the
context of advances or stillstands of glacier fronts. Care must be taken
when interpreting these ages (Kirkbride and Winkler, 2012) because,
once constructed, a moraine may not stabilize for a long time (Putkonen
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(c) Bolling/Allerad-ACR.(14.7-12.9 ka)

Glacial Extent
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. 20-0%

. Insufficient Data

Fig. 5. Glacier extent during the B-A and ACR in the Americas. See Fig. 3 for
full caption. Figure information comes from author interpretations and re-
fecences cited in Table 3.

et al.,, 2008; Heyman et al., 2011). Moreover, weathering and ex-
humation since stabilization commonly remove grains from the surfaces
of boulders, leading to ages that are younger than those of the moraines
on which they lie (Briner et al., 2005; Hein, 2009; Heyman et al., 2011;
Oliva and Ruiz-Fernandez, 2015). Frequently, glacier fronts are limited
in their advance by previously formed moraines and, in such cases, the
glacier may deposit new boulders on old moraines. This process can be
repeated several times and form a single moraine ridge that is the
product of multiple advances (Osborn, 1986; Winkler and Matthews,
2010; Schimmelpfennig et al., 2014). The elevation of sample sites,
which have changed frequently through the time on account of glacio-
isostatic adjustments, is essential in calculating cosmogenic ages.
Morever, the pattern of these changes is very difficult to know, which
also introduces uncertainty in cosmogenic ages (Jones et al., 2019).
Snow can reduce the exposure of surfaces to cosmogenic radiation and,
in most cases, it is difficult to judge the impact of variations in snow
cover over the thousands of years that a surface was exposed (Schildgen
et al., 2005). Finally, in some cases, glaciers can advance or retreat
independently of climatic forcing (Quincey et al., 2011; Cofaigh et al.,
2019).

These potential problems may not necessarily be solved by col-
lecting and analyzing a larger number of samples from the same glacial
landform. If altered boulders or boulders with prior radiation exposure
are sampled, the statistic only increases the error (Palacios, 2017).
Placing the results of cosmogenic nuclide exposure dating within a
suitable geomorphological context is far more important than the sta-
tistics themselves. This context provides grounds for discarding im-
possible results and preferentially weighting others. For this reason, this
review has relied not only on surface exposure ages and the most recent
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(d) YD (12.9-11.7 ka) . ...
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Figure 6. Glacier extent during the YD in the Americas. See Figure 3 for full
caption. Figure information comes from author interpretations and references
cited in Table 4.

production rates, but also on radiocarbon ages and regional geomor-
phological contexts that strengthen age interpretations and indicate the
degree to which they might be in error.

3.5. Assessment of uncertainty due to systematics of cosmogenic-nuclide
dating

The studies on which this review is based have been conducted over
many decades, during a period when dating methods and standards
have markedly changed. Although our focus is on recent literature,
which is based on current knowledge, we include pertinent older stu-
dies that report ages calculated using earlier protocols. Given the many
hundred studies and tens of thousand ages involved, reconciliation of
chronological differences resulting from different methods would con-
stitute a major research project and one that is far beyond the scope of
this review. To that end, we therefore caution readers that the patterns
we draw from the literature are a starting point for more detailed
comparisons between specific study areas; we encourage readers to
thoroughly evaluate and, if necessary, recompute ages reported in the
literature for such purposes.

However, as shown below, ages cited in this paper are still com-
parable, because systematic uncertainties resulting from different
methods and production rates are lower than 5% for most of the ages
that we discuss here. Most of the ages cited in the text have been cal-
culated using the '°Be isotope and are derived from rocks containing
quartz. Some ages cited in the text have been calculated using **Cl and
®He in rocks without quartz, commonly volcanic rocks. Recent litera-
ture has shown that the ages derived from these three isotopes are
comparable, albeit with different uncertainties (Phillips, 2016, 2017;
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(e) Early Holoceng (11.7-7.0 ka)

Glacial Extent

. 100-80%
. 80-60% %,

60-40%

40-20%

Fig. 7. Glacier extent during the early Holocene in the Americas. See Fig. 3 for
full caption. Figure information comes from author interpretation and refer-
ences cited in Table 4.

Barth et al., 2019).

Balco and Schaefer (2006), Thompson et al. (2017), Corbett et al.
(2019), and Barth et al. (2019) have recently recalculated 36¢l ages
cited in the Laurentide sections of this paper and have concluded that
they differ little from previously published ages. All °Be ages from
Alaska have been calculated using similar production rates: the Arctic
value of Young et al. (2011) or the NENA value of Balco et al. (2008).
Menounos et al. (2017) report 10Be ages for the area of the Cordilleran
Ice Sheet that are consistent with both previously and subsequently
published ages from this region. Recently, °Be ages for the Rocky
Mountains/Yellowstone region have been calculated or recalculated by
Shakun et al. (2015a), Dahms et al. (2018), Licciardi and Pierce et al.
(2018), and Pierce et al. (2018), and shown to be internally consistent
and consistent with the other ages in North America. Sierra Nevada 3°Cl
and °Be ages are taken from Phillips et al. (2016) and Phillips (2017)
and are based on CRONUS-Earth production rates (Borchers et al.,
2016; Marrero et al., 2016; Phillips et al., 2016). Whole-rock cosmo-
genic 2°Cl ages on moraine boulders and glacially polished rock sur-
faces in Mexico and Central America are based on calculations and
recalculations using CRONUScalc (Marrero et al., 2016). Ages from
Mexico reported by Vazquez-Selem and Lachniet (2017) and Central
America reported by Potter et al. (2019) and Cunningham et al. (2019)
are based on different scaling models, but the age differences are less
than 2.5%. In conclusion, all cosmogenic ages from North and Central
America cited in the text have been calculated or recalculated in the
past three years, and possible differences are likely less than 5%.

Turning to South America, the Late Glacial chronology in the
northern Andes is mainly based on radiocarbon and '°Be cosmogenic
ages. Many 10Be ages were recomputed using the Cosmic Ray Exposure
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Program (CREp, http://crep.crpg.cnrs-nancy.fr/#/) (Martini et al.,
2017b) and the synthetic High Andes '°Be production rate reported by
Martin et al. (2015). Jomelli et al. (2014) notably homogenized and
recalculated 477 published '°Be and *He surface exposure ages from the
Peruvian and Bolivian Andes, spanning the past 15,000 years. Aftter the
publication of the paper by Jomelli et al. (2014), Martin et al. (2015)
proposed a new empirical '°Be production rate for the Tropical Andes
that is similar, within uncertainties, to those proposed by Blard et al.
(2013a) and Kelly et al. (2015). Jomelli et al. (2017) and Martin et al.
(2018) adopted this new production rate and reported recalculated new
ages, which we follow in this paper. A recent review by Mark et al.
(2017) provides additional information on the Late Glacial chronology
of the Peruvian and Bolivian Andes. Alcala-Reygosa et al. (2017) report
36Cl ages from volcanic areas in the Peruvian Andes, which they cal-
culated using the spreadsheet developed by Schimmelpfennig et al.
(2009) and Schimmelpfennig et al. (2009). Bromley et al. (2011) pro-
vide 3He ages for the same area. The *°Cl, *He, and radiocarbon ages
from the Peruvian Andes are consistent with one another (Blard et al.,
2013a, 2013b; Bromley et al., 2019). °Be ages from northern Chile
were calculated or recalculated by Ward et al. (2015, 2017) based on a
protocol similar to that used in the Peruvian and Bolivian Andes. 3°Cl
ages from northern Chile (Ward et al., 2017) were calculated using
CRONUS-Earth production rates and the LSDn routine in CRONUScalc
(Marerro et al., 2016b). Recently, D’Arcy et al. (2019) recalculated all
the '°Be ages from the Central Andes of Argentina using local High
Andes production rates (Kelly et al., 2015; Martin et al., 2015; Martini
et al., 2017a). Ages from Patagonia and Tierra del Fuego were re-
calculated by the CRONUS-Earth online exposure age calculators (v.
2.2) (Balco et al., 2008), using the time-dependent Lal/Stone scaling
model and the "Patagonian” production rate of Kaplan et al. (2011). As
in North and Central America, the South American cosmogenic ages
differ slightly between some regions, but the errors do not exceed 5%
and thus do not change the overall conclusions of the paper.

We have converted '*C ages from all the regions to calendar year
ages using CALIB 7.1.

4. The manifestation of the Global Last Glacial maximum (26.5-19
ka) in the Americas and the Start of the Last Glacial Termination

4.1. The Global Last Glacial maximum

The first period analyzed covers the time between 26.5 ka and 19
ka, when most of the northern ice sheets and many mountain glaciers
reached their maximum extent in the last glacial cycle (Clark et al.,
2009). This period coincides with the time of minimum sea level and is
characterized by a quasi-equilibrium between the cryosphere and cli-
mate (Clark et al., 2009). Following standard usage (Clark et al., 2009;
Hughes et al., 2013), we have called this period the ‘Global Last Glacial
Maximum’ (GLGM). Clark et al. (2009) note that many ice masses,
especially mountain glaciers, achieved their maximum extents prior to
or after this period, and that the term ‘Local Last Glacial Maximum’
(LLGM) should be used to describe local maxima in particular regions.
They further proposed 20-19 ka for the beginning of deglaciation,
which was the time when most of the northern ice sheets began to re-
treat, sea level and temperatures started to increase, followed by an
increase in the concentration of CO, in the atmosphere. Hughes et al.
(2013), in an exhaustive review of the chronology of the LLGM
throughout the world, show that not only did many mountain glaciers
achieve their maximum extents before the GLGM, but some northern
ice sheets did as well. They acknowledge, however, the fundamental
role that the Laurentide Ice Sheet played in deglaciation, where the
LLGM broadly coincides with the GLGM.

4.2. Laurentide Ice Sheet

The extent of glaciation during the LGM is summarized in Fig. 3.
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The large extent of the LIS was the result of planetary cooling, but its
very existence also had an effect on the evolution of mountain glaciers.
The GLGM broadly coincides with the maximum size of the Laurentide
Ice Sheet (LIS) (Dyke et al., 2002; Clark et al., 2009; Stokes, 2017).
Despite the difficulty of precisely dating the maximum extent of the ice
sheet, it is widely accepted that different sectors of the LIS reached their
local maxima at different times during the broad interval of the GLGM.
For example, it has been suggested (Dyke et al., 2002) that the north-
western, northeastern and southern margins likely attained their max-
imum positions relatively early (~28-27 ka), whereas the southwestern
and northernmost limits were probably reached slightly later (~25-24
ka). More recently, others have suggested that the northwestern
margin, in the vicinity of the Mackenzie River delta, may have reached
its maximum position at less than 20 ka (Murton et al., 2007; Kennedy
et al., 2010; Lacelle et al., 2013) and possibly as late as 17-15 ka
(Murton et al., 2015). If correct, this relatively late advance to a LLGM
ice extent may have been aided by eustatic sea-level rise and the
opening of the Arctic Ocean along the Beaufort Sea coastline, which
provided a source of moisture and increased precipitation in the region
(Lacelle et al., 2013).

Irrespective of the regional asynchronicity in the time of the local
glacial maximum, it is likely that the LIS existed at its near-maximum
extent for several thousand years, which would indicate that its mass
balance was in equilibrium with the climate for a prolonged period of
time (Dyke et al., 2002). Indeed, initial deglaciation is thought to have
been slow prior to 17 ka (Dyke et al., 2002), and, as noted above,
glaciers in some regions may have been advancing (e.g. in the far
northwest). Possible exceptions to the generally slow recession include
the major lobes of the southern margin of the ice sheet and the marine-
based southeastern margin around the Atlantic Provinces. More rapid
retreat of these margins was likely caused by ice-stream drawdown
(Shaw et al., 2006; Margold et al., 2018) and, in the southeast, by eu-
static sea-level rise (Dyke, 2004). In contrast, retreat of the land-based
southern margin is thought to have been driven mainly by orbital for-
cing (Clark et al., 2009; Gregoire et al., 2015). Based on 22 19Be surface
exposure ages on boulders on GLGM moraines in Wisconsin, Ullman
et al. (2015a) dated the initial retreat of the ice sheet to as early as
23 =+ 0.6 ka, which coincided with a small increase in boreal summer
insolation. '°Be ages on samples 10-15 km up-ice from these moraines
indicate a marked acceleration in retreat after ca. 20.5 ka that coin-
cided with increased insolation prior to any increase in atmospheric
carbon dioxide. This lends support to the notion that orbital forcing was
the primary trigger for deglaciation of the LIS (see also Gregoire et al.,
2015; Heath et al., 2018).

Although increased insolation is thought to have triggered the in-
itial retreat of the southern margin of the ice sheet (Ullman et al.,
2015a), it is interesting to note that the overall net surface mass balance
likely remained positive for much of the early part of deglaciation
(Ullman et al., 2015b). However, the ice sheet was clearly shrinking,
which implies that the primary mechanism of mass loss was dynamic
discharge/calving from major marine-based ice streams (Margold et al.,
2015, 2018; Ullman et al., 2015b; Robel and Tziperman, 2016; Stokes
et al., 2016). Indeed, ~25% of the ice sheet’s perimeter was occupied
by streaming ice at the global LGM, compared to ~10% at 11 ka (Stokes
et al., 2016). Only when summer temperatures increased by 6-7°C re-
lative to the LGM did the overall net surface mass balance turn in-
creasingly negative (Ullman et al., 2015b). Numerical modelling sug-
gests that this occurred soon after ~11.5 ka and resulted in the rapid
retreat of the land-based southern and western margins of the LIS
(Ullman et al., 2015b). The rapid retreat of these terrestrial margins
contrasts with the generally slow retreat of the northern and eastern
marine-based margins and resulted in a highly asymmetric pattern of
retreat towards the major dispersal centers in the east (Dyke and Prest,
1987; Margold et al., 2018).
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4.3. Alaska

Alaska is located at latitudes similar to the northern LIS, but was
covered largely by mountain glaciers during the GLGM. Thus, it is of
interest to understand its glacial evolution as a first link between the
large ice sheet and mountain glaciers. The best available evidence from
Alaska suggests that glaciers expanded during Marine Isotope Stage
(MIS) 2 (the Late Wisconsinan glaciation in local terminology), in step
with the GLGM. Although maximum ages constraining the advance
phase are sparse, constraints on LGM culmination date to ~21 ka in
several regions spanning the state, including the Ahklun Mountains
(Kaufman et al., 2003), the Alaska Range (Tulenko et al., 2018), the
Brooks Range and Arctic Alaska (Pendleton et al., 2015). The best
available maximum age for the LGM glacier advance in Alaska — ~24 ka
— is arguably from the Ahklun Mountains (Kaufman et al., 2003, 2012).
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Deglaciation in Alaska commenced as early as ~21 ka. Recognizing that
cosmogenic nuclide exposure ages of moraine boulders represent the
culmination of an advance, mean exposure ages of LGM terminal
moraine boulders (~21 ka) mark the transition from maximum glacier
conditions to ice retreat and terminal moraine stabilization. Moraines
up-valley of terminal moraines were formed in the Ahklun Mountains
(Manley et al., 2001), and marine sediments were deposited within
LGM extents in Cooke Inlet (Reger et al., 2007) as early as ~20 ka. In
the Alaska Range, the first moraines up-valley of the LGM terminal
moraines were deposited ~20 ka (Tulenko et al., 2018). In at least one
or two valleys in the Brooks Range that are accurately dated, glaciers
receded well up-valley between ~21 ka and ~17 ka (Pendleton et al.,
2015).

Climate conditions in Alaska during the GLGM are not well known,
but several lines of evidence indicate that conditions were much more
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Fig. 8. Glacial landforms at Deming Glacier on Mount Baker in the North Cascade Range, Washington State. Late-glacial moraines below the present-day terminus of
Deming Glacier are numbered 1 through 7. Moraines 1 and 7 and the dashed black line represent the maximum late glacial (Bglling?) limit of Deming Glacier.
Moraine number 4 marks the YD limit with its associated adiocarbon ages. Note Neoglacial - Little Ice Age terminus.
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arid than today (e.g. Finkenbinder et al., 2014; Dorfman et al., 2015).
Data on temperature changes during the LGM are scarce. Some pa-
leoecological evidence exists from the Brooks Range suggesting summer
temperatures 2-4°C colder than the present (Kurek et al., 2009), and
pollen data from across Beringia suggest summer temperatures were
~4°C lower (Viau et al., 2008). On the other hand, climate modeling
indicates rather warm conditions in Alaska during the LGM, associated
with persistent shifts in atmospheric circulation related to Laurentide
and Cordilleran ice sheet size (Otto-Bliesner et al., 2006; Lofverstrom
and Liakka, 2016; Liakka and Lofverstrom, 2018).

The largest gaps in knowledge regarding the timing of the LGM and
initial deglaciation in Alaska are related to the spatial pattern of glacier
change across the state and complex climate forcing. High-resolution
chronologies from moraine sequences from single valleys are scarce.
Furthermore, few quantitative paleoclimate data exist, and the existing
records of glaciation and snowline depression have yet to be reconciled
with climate modeling results that show relatively warm LGM condi-
tions.

4.4. Cordilleran Ice Sheet and North Cascades

Glaciers in western Canada were expanding into lowland areas on
the flanks of the Coast and Rocky Mountains during the GLGM, con-
tributing to development of the CIS (Clague, 2017). The CIS was not
fully formed at the GLGM; large areas of southern British Columbia
remained ice-free several thousand years later. Alpine glaciers in the
southern Coast Mountains advanced into lowlands near Vancouver,
British Columbia, after 25.8 ka during the Coquitlam stade in local
terminology (Hicock and Armstrong, 1981; Hicock and Lian, 1995; Lian
et al.,, 2001). To the south, alpine glaciers in the North Cascades
achieved their maximum MIS 2 extents between 25.3 ka and 20.9 ka,
about the same time as the GLGM (Kaufman et al., 2004; Riedel et al.,
2010). The alpine advances at these sites ended with the Port Moody
interstade sometime after 21.4 ka, when glaciers in the southern Coast
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Mountains and the North Cascades retreated (Hicock et al., 1982, 1999;
Hicock and Lian, 1995; Riedel et al., 2010) (Fig. 8).

Regional pollen and macrofossil data and glacier reconstructions
indicate that the climate that led to the alpine glacial advance in the
North Cascades was the coldest and driest period in MIS 2 (Barnosky
et al., 1987; Thackray, 2001; Riedel et al., 2010). Glacier ELAs fell by
750-1000 m from west to east across the range in response to a re-
duction in mean annual surface air temperature of ~8°C and a sig-
nificant reduction in precipitation (Porter et al., 1983; Bartlein et al.,
1998, 2011; Liu et al., 2009). The primary reasons for the relatively arid
climate were likely the lower sea surface temperatures in the Pacific
Ocean, the greater distance to the coastline and large-scale changes in
the atmosphere caused by formation of continental ice sheets (Hicock
et al., 1999; Grigg and Whitlock, 2002; Thackray, 2008). Paleoclimatic
simulations produced by global climate models suggest that three large-
scale controls on climate have been especially important in the Pacific
Northwest during Late Glacial time (Broccoli and Manabe, 1987a,
1987b; COHMAP Members, 1988; Bartlein et al., 1998; Whitlock et al.,
2000). First, the Laurentide Ice Sheet (LIS) influenced both temperature
and atmospheric circulation. Second, variations in the seasonal dis-
tribution of insolation as a result of the Earth’s orbital variations af-
fected temperature, effective precipitation and atmospheric circulation.
Third, changes in atmospheric concentrations of CO, and other green-
house gases affected temperatures on centennial and millennial time-
scales (Sowers and Bender, 1995).

4.5. Rocky Mountains/Yellowstone region

The Rocky Mountains allow us to link glacier behavior from the LIS
to the north and the CIS to the northwest with lower latitudes, where
only small glaciers formed during the period of maximum glacial ex-
pansion (Figs. 8, 9, 10, 11, 12, and 13). Recent ages from Colorado
confirm that a number of valley glaciers reached their LLGM extent
~21-20 ka (Brugger et al., 2019) at roughly the same time as the GLGM

Fig. 9. GLGM moraines in in the Beartooth Range, Rocky Mountains, Montana. A) Location of the photos. B) Moraines; view west. C) Moraines; view east. The
moraines have been dated to 19.8 ka (Licciardi and Pierce, 2018). Photos by Nuria Andrés.
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Fig. 10. A) Location of the Wind River Range in the
Rocky Mountains of Wyoming, Montana and Idaho,
and the Middle and North forks of the Popo Agie
River (red box) on the southeast flank of the range.
B) Overview of LLGM and Late-glacial (pre-
Holocene) moraines in the Middle and North fork
catchments of the Popo Agie River. Only the farthest
extents of the dated moraines are indicated in the
main valleys. Yellow — Positions and '°Be ages of
terminal LGM and post-LGM (Pinedale and post-
Pinedale) moraines. Green — Positions and '°Be ages
of moraines associated with glacial activity during
the H-1/0Oldest Dryas period. Red — Positions and
19Be ages of moraines associated with the YD period.
The glacial geology and chronology of this area were
originally described by Dahms (2002, 2004) and
Dahms et al. (2010), and were subsequently revised
by Dahms et al. (2018, 2019). Source: Google Earth
images. (For interpretation of the references to color
in this figure legend, the reader is referred to the web
version of this article.)
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(known locally as the Pinedale Glaciation), while in other valleys gla-
ciers continued to advance, re-advance or remain in the same position
for several thousand years until ~17 ka (see Brugger et al., 2019, and
references therein).

In the Greater Yellowstone region, glaciers of the Beartooth Uplift
and High Absaroka Range appear to have reached their maximum ex-
tents ~20 ka (Licciardi and Pierce, 2018). A similar pattern is evident
on the eastern slope of the Teton Range, where the oldest moraines date
to 19.4 = 1.7 ka (Pierce et al., 2018). Differences in the ages of LLGM
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limits in valleys surrounding the Yellowstone Plateau are likely due to
local topographic factors at the margins of the Yellowstone Ice Cap
rather than general climate forcing (Young et al., 2011; Leonard et al.,
2017a, 2017b; Pierce et al., 2018; Laabs et al., in preparation).

Ages of ~23-21 ka from terminal moraines of four valley glaciers in
the Wind River Range, about 150 km southeast of Yellowstone Park,
show that the LLGM also generally coincides with the GLGM (Phillips
et al., 1997; Shakun et al., 2015a; Dahms et al., 2018). Deglaciation
seems to have been swift here; ice appears to have receded to 2.6 km
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Fig. 11. LLGM moraines on the east side of the Teton Range, Wyoming, near Taggart and Jenny lakes. A) Locations of photos. B) Moraines east of Taggart Lake. C)
Moraines west of Jenny Lake. The moraines have been dated to between 14.4 and 15.2 ka (Licciardi and Pierce, 2018). Photos by Nuria Andrés.

behind its terminus in the Middle Popo Agie valley by ~19 ka and 13
km upvalley from its terminus in the adjacent North Fork valley by
~18-17 ka. Glaciers in both valleys apparently receded 19 km and 27
km to their respective cirque riegels by 17-16 ka (Dahms et al., 2018).
The glacier in the Pine Creek valley receded nearly 30 km from its
terminus at Fremont Lake by 14-13 ka (Shakun et al., 2015a).

Many glaciers in the Rocky Mountains of Colorado reached their
maximum extents during the GLGM, with the outermost moraines
abandoned ~22-20 ka (Ward et al., 2009; Diihnforth and Anderson,
2011; Young et al., 2011; Schweinsberg et al., 2016; Leonard 2017a,
2017b; Brugger et al., 2019). In some cases, extensive deglaciation
followed shortly after 20 ka (Ward et al., 2009), but elsewhere glaciers
remained at, or had re-advanced to, near their maximum extents as late
as 17-16 ka (Briner, 2009; Young et al., 2011; Leonard et al., 2017a,
2017b), well after the end of the GLGM. In some instances, these 17-16
ka moraines are the outermost moraines of the last glaciation.

The near complete absence of modern glaciers in the Colorado
Rocky Mountains makes it difficult to estimate ELA depressions at the
GLGM, although in the San Juan Mountains of southwestern Colorado it
appears that they were lowered by at least 900 m (Ward et al., 2009).
Recent numerical modeling of paleo-glaciers in several Colorado ranges
indicates a rather modest GLGM temperature depression of 4.5°-6.0°C
compared to present-day temperatures, assuming no change in pre-
cipitation (Diihnforth and Anderson, 2011; Leonard et al., 2017a,
2017b). In contrast, work in the Mosquito Range suggests a temperature
depression of 7.5°-8.1°C (Brugger et al., 2019). Earlier work, using
different paleo-glaciological approaches, indicates somewhat greater
GLGM temperature depressions in the Colorado Rocky Mountains
(Leonard, 1989, 2007; Brugger and Goldstein, 1999; Brugger, 2006,
2010; Refsnider et al., 2008). Global and regional climate models
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suggest that precipitation in the northern Rocky Mountains was sig-
nificantly reduced compared to the present. In contrast, the southern-
most Rocky Mountains in New Mexico were wetter at the GLGM than at
present, and the central Rocky Mountains of Colorado and Wyoming
experienced close to modern precipitation (Oster et al., 2015).

4.6. Sierra Nevada

Few moraines from the early GLGM period in the Sierra Nevada
have been directly dated, perhaps because such moraines were less
extensive than those built during the local maximum and were thus
obliterated by the later advances (Phillips et al., 2009). However, there
is abundant evidence of a cooling climate during the early GLGM from
nearby lacustrine records. For example, cores collected from Owens
Lake, just east of the range (Smith and Bischoff, 1997), record a rise in
juniper pollen, which is considered an indicator of cold temperature,
between 30 ka and 25 ka, reaching a maximum between 25 ka and 20
ka (Woolfenden, 2003). In the same cores, total organic carbon, which
decreases as input of glacial rock flour increases, falls from about 4% to
near zero between 30 ka and 25 ka (Benson et al., 1998a; Benson et al.,
1998b). Similar patterns are observed in sediments from Mono Lake
(Benson et al., 1998a, Benson et al., 1998b), which also received direct
discharge from glaciated valleys in the Sierra Nevada. The inference
from lacustrine records that glaciation reached near-maximum extent at
about 25 ka is confirmed by a fortuitously preserved terminal moraine
in the valley of Bishop Creek, located at about 95% of the maximum
LGM extent and dated to 26.5 + 1.7 ka (Phillips et al., 2009) (Fig. 14).

Cosmogenic and radiocarbon data for GLGM glaciation in the Sierra
Nevada have recently been compiled and updated by Phillips et al.
(2016); Phillips (2017). Both °Be and 3°Cl surface-exposure dating
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Fig. 12. Recessional moraines along the Yellowstone River in the Rocky Mountains of Montana. A) Locations of photo. B) Moraines; view from the northeast. The
moraines have been dated to between 14.4 and 15.1 ka (Licciardi and Pierce, 2018). Photo by Nuria Andrés.

yields ages ranging from 21 ka to 18 ka for the GLGM moraines (Tioga 3
in local terminology). Radiocarbon ages are slightly younger (19-18
ka), but this is because they are on organic matter accumulated in de-
pressions behind the Tioga 3 terminal moraines and thus date to the
earliest stages of retreat. The spacing of recessional moraines indicates
that retreat was at first slow, but then accelerated (Phillips, 2017).

In summary, glaciers advanced in the Sierra Nevada steadily after
about 30 ka, achieving positions slightly short of their maximum ex-
tents by 26 ka. They then were relatively stable for the next 5 ka, but
advanced slightly between 22 ka and 21 ka to their all-time maximum
limits of the last glacial cycle. Minor retreat from this maximum posi-
tion began at 19 ka and accelerated rapidly after 18.0 ka to 17.5 ka.
Plummer (2002) attempted to quantify both temperature and
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precipitation variations in the Sierra Nevada region during the GLGM
by simultaneously solving water and energy balance equations for
glaciers and closed-basin lakes. He concluded that precipitation during
the peak LGM-maximum period (21-18 ka) was about 140% of histor-
ical levels and temperature was 5-6°C colder than today.

4.7. Mexico and Central America

The highest mountains in Mexico and Central America were glacier
covered during the GLGM. There the LLGM overlaps part of the GLGM.
In central Mexico, *°Cl exposure ages of moraines from the maximum
advance are between 21 ka and 19 ka. Moraines were deposited as late
as 15-14 ka in the mountains near the Pacific (Tancitaro, 3840 m asl)
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Fig. 13. GLGM moraines in the Clear Creek watershed, Sawatch Range, central Colorado Rocky Mountains). A) Location of photos. B) Moraines; view to the West. C)
Moraines; view to the east. The moraines have been dated to between 19.1 and 21.7 ka (Young et al., 2011). Photos by Nuria Andrés.

and Gulf of Mexico (Cofre de Perote, 4230 m asl), but minor recession
occurred around 17 ka in the interior (Iztaccihuatl, 5286 m asl)
(Vazquez-Selem and Heine, 2011). Boulders on recessional moraines
built inside the moraines from the local maximum have yielded ex-
posure ages between ~14.5 ka and > 13 ka, and exposure ages on
glacial polish associated with recession range from 15 ka to 14 ka
(Vazquez-Selem and Lachniet, 2017). In Cerro Chirrip6 (3819 m asl),
Costa Rica, the local maximum is ~25 ka to 23 ka based on 3°Cl ages
(Potter et al., 2019), whereas '°Be exposure ages of lateral and reces-
sional moraines are between ca. 18.3 ka and ~16.9 ka (Cunningham
et al., 2019). They are thus younger than recessional moraines on
mountains in central Mexico at a similar elevation (e.g. Tancitaro, 3840
m asl). No ages exist for the glaciated Altos Cuchumatanes (3837 m asl)
of Guatemala, although a maximum around the time of the GLGM is
probable based on data from central Mexico and Costa Rica (Roy and
Lachniet, 2010).

ELAs in the region during the LLGM were depressed 1000-1500 m
compared to modern values (equivalent to 6-9°C of cooling), which is
consistent with ELA depression around the world during the GLGM
(Lachniet and Vazquez-Selem, 2005).

4.8. Northern Andes

A widespread advance in the Northern Andes during the GLGM is
not clear, and the limited chronological data available preclude robust
interpretations. In the Venezuelan Andes, temperatures during the
GLGM have been estimated to be around 8°C cooler than present, ac-
cording to palynological analysis and a paleo-ELA reconstruction
(Schubert and Rinaldi, 1987; Stansell et al., 2007). Some outermost
moraines have been dated to around 21 ka in the Sierra Nevada based
on '°Be ages (modified ages from Angel, 2016; updated ages from
Carcaillet et al., 2013). The Las Tapias terminal moraine at 3100 m asl
in the Sierra Santo Domingo, northeastern Sierra Nevada, yielded ages
of 18.2 + 1.0 ka (n=3) (Angel, 2016), and a glacier advance in the
Cordillera de Trujillo has been dated to around 17 ka (Bezada, 1989;
Angel, 2016) (Fig. 15).

Climate in the Colombian Andes during the GLGM was cold and dry
(van Geel and van der Hammen, 1973; Thouret et al., 1996). In this
region, there are only a few ages from scattered valleys and it is difficult
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to evaluate glacier extent during the GLGM. However, in Paramo Pefia
Negra, close to Bogota, two moraine complexes between 3000 m and
3550 m asl were built between ~28 ka and 16 ka (Helmens, 1988).
Paleo-ELAs were on average 1300 m lower than modern, likely driven
by 6-8°C colder temperatures (Mark and Helmens, 2005). A till (‘drift
3’) on the western slopes of the Sierra Nevada del Cocuy may date to the
GLGM. The onset of sedimentation in Laguna Ciega, which is located on
this till at 2900 m asl has been radiocarbon-dated to ca. 27.0-24.5 ka BP
(van der Hammen, 1981).

The glacial chronology of the Ecuadorian Andes is poorly con-
strained and does not allow clear conclusions to be drawn about glacier
extent. There are some indications of possible advances around the time
of the GLGM, such as in the Rucu Pichincha and the Papallacta valley
(Heine and Heine, 1996) and in Cajas National Park (Hansen et al.,
2003). Brunschon and Behling (2009) suggest that climate was cold and
wet during the GLGM in the southern Ecuadorian Andes based on a
pollen record and the upper timberline position in Podocarpus National
Park.

4.9. Peruvian and Bolivian Andes

Evidence for the extent and chronology of past glacier advances in
Peru and Bolivia at the GLGM comes from moraine chronologies and
lake sediment records that provide a suite of ages before and after 21 ka
(Clayton and Clapperton, 1997) (Blard et al., 2011). The time of the
local maximum glacier expansion, based on the average cosmogenic
ages of moraine groups, is ~25 ka, but there are large uncertainties (up
to 7 ka), making the exact time of the LLGM uncertain. It also remains
uncertain whether LLGM moraines were constructed during a long still-
stand or a re-advance that erased the previous maximum limit (Mark
et al., 2017). A close examination of site records reveals that, although
the LLGM was close to the GLGM, there was, in some places, a larger
local maximum extension of glaciers before the GLGM (Farber et al.,
2005; Smith et al., 2005; Rodbell et al., 2008). In the southern part of
the Altiplano, maximum glacier extents of the last glaciation are
probably as old as 60 ka (e.g. Blard et al., 2014) (Figs. 16 and 17). Lakes
Titicaca and Junin, which are outside glacial moraines, have provided
sediment records that indicate deglaciation was underway by 22-19.5
ka (Seltzer et al., 2000, 2002; Baker et al., 2001a, 2001b; Rodbell et al.,
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Fig. 15. Glacial landforms between ~3100 and 4200 m a.s.l. in Gavidia Valley in the Mérida Andes The valley has a U-shaped cross-profile, and has numerous
outcrops of striated and polished bedrock (roches moutonnées). Deglaciation happened in two stages: slow retreat between ~22 and 16.5 ka, followed by the
complete deglaciation at ~16 ka (Angel et al., 2016). Photo by Eduardo Barreto.

2008). On the Coropuna volcano, located in southern Peru, *He ages
indicate that the LLGM happened ~25 ka and deglaciation began at
~19 ka (Bromley et al., 2009).

Temperatures decreased ~6° C during the GLGM in the Peruvian
and Bolivian Andes (Mark et al., 2005), and precipitation was slightly
higher than today, as indicated by the Sajsi paleo-lake cycle (Seltzer
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et al., 2002; Blard et al., 2011; Blard et al., 2013a). Therefore, a tem-
perature increase was probably the main driver of deglaciation between
19 ka and 17 ka. However, precipitation variations likely played an
important role in some regions where a late deglaciation is reported,
such as in the vicinity of the paleo-lake Tauca, on the central Altiplano
(Martin et al., 2018).
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4.10. Southern Bolivia and Northern Chile

Glacier extent at the GLGM in the western cordillera of the Andes,
adjacent to the Arid Diagonal, is unclear. Glacial deposits and land-
forms north of the Arid Diagonal that have been investigated include
those at Cerro Uturuncu (Blard et al., 2014), El Tatio and Sairecabur
(Ward et al., 2017), and Cerro La Torta and the Chajnantor Plateau
(Ward et al., 2015). Deposits in the subtropics south of the Arid Diag-
onal include those in Valle de Encierro (Zech et al., 2006) and Cord6n
de Dona Rosa (Zech et al., 2007). At most sites north of the Arid Di-
agonal, a set of degraded moraines lies 2-5 km outside one or two sets of

17

closely nested, sharper-crested moraines, which in turn are outside
smaller younger up-valley moraines (Jenny et al., 1996). A few '°Be
and 3°Cl ages suggest that the outer degraded moraines date to MIS 6
(191-130 ka; Ward et al., 2015). Greater precision is not possible with
available data, but this interval corresponds to the age of a broad ba-
jada along the Salar de Atacama based on *°Cl ages on terrace surfaces
and a depth profile (Cesta and Ward, 2016).

A set of more prominent moraines inside these degraded moraines
marks the maximum expansion of glaciers after MIS 6 (Ward et al.,
2017). Widely scattered '°Be and °Cl ages, ranging from about 90 to
20 ka (45-35 ka modal age), have been obtained from boulders on these
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Fig. 17. Glacial landforms on Hualcahualca volcano, southern Peru. A) Locations of photos. B) Prominent well-preserved LLGM moraine on the east flank of the
volcano. C) H-1 and YD moraines on the north flank of the volcano (Alcala-Reygosa et al., 2017). Photos by Jesus Alcala-Reygosa.

moraines both north and south of the Arid Diagonal (Ward et al., 2017)
(Fig. 18). Eight boulders on the sharp crest of the LLGM moraine at El
Tatio yielded six 3°Cl ages between 41 ka and 19.8 ka, with outliers at
82 and 57 ka. At Cerro La Torta, one LLGM moraine boulder yielded a
19Be age of 24.7 = 1.8 ka and glaciated bedrock just inside the LLGM
limit returned a '°Be exposure age of 31 * 2.4 ka. Similar ages have
been obtained from the terminal moraines at Cerro Uturuncu, south of
paleo-lake Tauca on the Bolivian Altiplano, with 8 of 12 >He ages be-
tween 46 and 33 ka (Blard et al., 2014). Similarly, a single boulder on
the outer terminal moraine in Encierro Valley yielded a '°Be age of
35 + 2 ka (Zech et al., 2006), and 9 of 13 '°Be samples from the out-
ermost moraines, drift, and outwash at Cordén de Dona Rosa returned
ages ranging from 49 to 36 ka (Zech et al., 2007).

If the local LGM moraines date to 49-35 ka, they were built at about
the same time as the Incahuasi highstand, during which a deep lake
formed in the Pozuelos Basin in Argentina (McGlue et al., 2013), and
during a period when glaciers in the subtropical Argentine Andes ex-
panded (see Section 4.11).

Exposure ages on bedrock inside the prominent LLGM moraines
(Blard et al., 2014; Ward et al., 2015) indicate that deglaciation was
underway by 20-17 ka. Assuming these ages are valid, deglaciation of
the western cordillera in northern Chile may have preceded that of the
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Altiplano.

The scatter in cosmogenic ages on moraines in this region may be
due to differences in dating methods. *°Cl production is en-
vironmentally sensitive, and production rates are less certain than those
for 1°Be. However, '°Be ages on the same features also exhibit scatter
(Ward et al., 2015). For example, the LLGM moraines bordering the
former 200 km? ice cap on the Chajnantor Plateau (4500-5500 m asl)
have yielded both °Be and *°Cl ages ranging from 141 to 43 ka.
However, 1°Be and 3°Cl exposure ages on glaciated bedrock beneath the
most prominent moraines are younger and less scattered (30-18 ka),
and one boulder on a small moraine ~1 km inboard of the LLGM
margin yielded an age of 26.7 + 2.8 ka, similar to the bedrock ages
(Ward et al., 2017). Additionally, the youngest bedrock exposure ages
(20-18 ka) are from downvalley sites, near the terminal moraines,
whereas ages higher on the plateau are older (30-26 ka) (Ward et al.,
2015). This pattern cannot be explained by retreat of the glacier
margin; rather it suggests that the LLGM moraines contain a significant
component of older reworked material with cosmogenic inheritance. It
is also consistent with the lesser, but still considerable, scatter seen in
the ages on LLGM valley glacier moraines in the region.

Reliable estimates of temperature and precipitation in northern
Chile during the GLGM will require more precise dating of the glacial
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Fig. 18. Glacial landforms in the arid Chilean Andes, from north to south: A) Glacial valley at El Tatio (22.3° S), view upvalley from the LGM right-lateral moraine
that has yielded *°Cl ages of 20-35 ka (Ward et al., 2017). Truck circled for scale. B) View upvalley from LGM right-lateral/frontal moraine near Co. La Torta (22.45°
S) dated to 25-30 ka (Ward et al., 2015). Dirt track visible for scale. C) Inner ridge of the western terminal complex of the former Chajnantor ice cap (23.0° S), last
occupied at the LLGM (Ward et al., 2015, 2017). View to the southwest; backpack circled for scale. D) Eastern terminal moraine complex at Chajnantor, likely MIS 3
(Ward et al., 2015, 2017). View to the north; largest visible boulders are ~1.5 m in diameter. E) View upvalley from likely MIS 6 terminal moraine of the southern
outlet glacier of the former ice field at Cordén de Puntas Negras (23.85° S). Sharper inner lateral/frontal moraines have yielded ages that support an LGM and/or MIS
3 age (Thornton, 2019). Locations of photos: 1 - A; 2 -B, 3 - C and D, 4 - E. Photos by Dylan J. Ward.

deposits there. Kull and Grosjean (2000) performed glacier-climate
modeling to reconstruct precipitation associated with construction of
the major sharp-crested moraine at the El Tatio site. They assumed a
regional temperature depression of ~3.5°C, consistent with that at ca.
17 ka, and concluded that an additional 1000 mm/yr of precipitation
over modern would be required to generate a glacier of the appropriate
size. If instead the sharp-crested El Tatio moraines date to the GLGM, as
suggested by Ward et al. (2017), temperatures were likely 5-7 C lower
than today and less precipitation would be required. For example, as-
suming a 5.7 C temperature depression typical of the GLGM in this area,
Kull et al. (2002) estimated that a 580 = 150 mm/yr increase over
modern precipitation would be required to explain the LLGM deposits
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at a different western cordillera site (Encierro Valley).

4.11. Central Andes of Argentina

The maximum expansion of glaciers in the Argentine Andes oc-
curred before the GLGM, between 50-40 ka and before 100 ka (Zech
et al., 2009, 2017; Martini et al., 2017a; Luna et al., 2018; D’Arcy et al.,
2019). However, there was a generalized glacier expansion during the
GLGM between 22° and 35° S (Fig. 19). North of the Arid Diagonal, the
LLGM is dated to 25-20 ka based on an average of 10 1°Be ages on both
sides of Nevado de Chani (Martini et al., 2017a). The advance on the
east side of Nevado de Chaiii was less pronounced than that on the west
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side. Glaciers advanced between ~22 ka and ~19 ka in the Laguna
Grande valley and at ~20 ka in the Pena Negra valley, both in the Tres
Lagunas area (Zech et al., 2009, 2017). M2 moraines in the Sierra de
Aconquija were built at ~22 ka (D’Arcy et al., 2019). There are no
moraines firmly dated to the GLGM in the Sierra de Quilmes (Zech
et al., 2017), but pronounced undated lateral moraines in the Nevado
del Chuscha valley might be of that age. Based on the geomorphology
and chronology of the moraine sequence in the same valley, Zech et al.
(2017) concluded that these lateral moraines must have been deposited
between 44 ka and 18 ka.

There is no consensus about precipitation levels in the subtropical
Andes north of the Arid Diagonal during the GLGM. Available evidence
from the nearby arid Altiplano suggests climate was only moderately
wetter than present (Baker et al., 2001a, 2001b; Placzek et al., 2006).
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Speleothem records from the western Amazon, the Peruvian Andes, the
Pantanal and southeastern Brazil all indicate wetter conditions during
the GLGM (Cruz Jr. et al., 2005; Wang et al., 2007; Kanner et al., 2012;
Cheng et al., 2013; Novello et al., 2017) due to an intensification of the
South American summer monsoon.

The glacial chronology south of the Arid Diagonal is poorly con-
strained. Moraines coincident with the GLGM have been found in the
Ansilta range and Las Lefas valley. Lateral moraines in the Ansilta
range have been dated to 28-19 ka based on four '°Be ages, and a
prominent lateral moraine in Las Lefias valley was built between 22 ka
and 20 ka (Terrizzano et al., 2017). Other possible evidence of GLGM
glacial activity comes from the Cordon del Plata range, where one
boulder on the Agostura I moraine was dated to 19 ka (Moreiras et al.,
2017). Two °Be ages (31 ka and 23 ka) on a moraine close to Nahuel
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Fig. 19. Glacial landforms on the east side of Nevado de Chani in the central Argentina Andes. A) Locations of the photos. B) View to the east (down-valley) of
Refugio Valley showing the GLGM I (red) and H-1 (purple) moraines. The green circle marks a hut for scale. C) YD lateral/frontal moraines in the Chani Chico valley,
which is a tributary of Refugio Valley. These moraines are located inboard of those shown in panel A. Photos by Mateo Martini. (For interpretation of the references to

color in this figure legend, the reader is referred to the web version of this article.)

Huapi lake, near Bariloche in northern Patagonia, suggest a GLGM age
(Zech et al., 2017). An end moraine in the Rucachoroi valley yielded
two 1°Be ages and Zech et al. (2017) assigned an age to an end moraine
in the Rucachoroi valley to 21 ka based on two '°Be ages. South of the
Arid Diagonal, there is evidence of wetter conditions during the GLGM
compared to today (Kaiser et al., 2008; Moreno et al., 2018a).

4.12. Patagonia

The time of the LLGM of the Patagonian Ice Sheet (PIS) is, un-
surprisingly, variable, given the broad latitudinal range of the
Patagonian Andes (38°-55°S). In most cases, Patagonian glaciers
achieved their maximum extents earlier than the GLGM, during MIS 3
(Darvill et al., 2015a; Garcia et al., 2018). Detailed stratigraphic and
chronologic data exist in the Chilean Lake District (41°S) on the
northwest side of the former ice sheet (Denton et al., 1999; Moreno
et al., 2015; Moreno et al., 2018b). Here, multiple radiocarbon-based
chronologies bracket the time of local major expansions of piedmont
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lobes at ~33.6, ~30.8, ~26.9, ~26 and 17.8 ka (Denton et al., 1999;
Moreno et al., 2015). There is a significant gap in glacial chronologies
for the area between 41° and 46°S, except for the Cisnes valley (44°S)
where moraines dating to the end of the GLGM (*°Be mean age ~20 ka)
are inside more distal moraines that are assumed to date to earlier
phases of the last glacial cycle (de Porras et al., 2014; Garcia et al.,
2019). However, the more distal moraines are undated, consequently it
remains unclear whether or not the pattern of more extensive MIS 3
advances persists southward in central Patagonia. Farther south, addi-
tional studies have been done in the area currently occupied by the
cross-border lakes of Lago General Carrera/Buenos Aires (46.5°S) and
Lago Cochrane/Pueyrredén (47.5°S). In the former area, ages of ~26 ka
have been obtained for the local maximum extent of the PIS (Kaplan
et al., 2004, 2011; Douglass et al., 2006), coincident with the GLGM.
However, earlier glacial activity, at 34-31 ka, is suggested by Optically
stimulated Luminescence (OSL) ages on buried sediments (Smedley
et al., 2016). In the latter area (Lago Cochrane/Pueyrredén), the LLGM
has been dated at ~29 ka, and possibly ~35 ka, with moraines of the
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GLGM located immediately up-ice (Hein, 2009; Hein et al., 2010; Hein
et al., 2017).

Exposure dating in southern Patagonia indicates that the LLGM was
far more extensive than subsequent GLGM advances. For example, the
Bahia Initil-San Sebastian ice lobe (53°S) expanded 100 km farther at
~45 ka and ~30 ka (Darvill et al., 2015a) than later advances during
the GLGM at ~20 ka (McCulloch et al., 2005a; Kaplan et al., 2008). The
pattern is repeated farther north where the Torres del Paine and Ultima
Esperanza ice lobes (51°S) reached their local maximum extents at ~48
ka, with subsequent advances dated to 39.2 ka and 34 ka, and a far less
extensive GLGM advance at 21.5 ka (Sagredo et al., 2011; Garcia et al.,
2019). Single exposure ages from the San Martin valley (49°S) tenta-
tively suggest local maximum glacier expansion at ~39 ka, with a less
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extensive GLGM advance at ~24 ka (Glasser et al., 2011).

Considered together, the chronologies demonstrate that the LLGM
in Patagonia occurred at different times, but largely during MIS 3.
Presently, there is no satisfactory mechanism to adequately explain the
timing of this local glacial maximum, although possible explanations
include regional insolation and coupled ocean-atmosphere interactions,
including the influence of the southern westerly winds, sea surface
temperatures, Southern Ocean stratification and Antarctic sea ice extent
(Darvill et al., 2015a, 2016; Moreno et al., 2015; Garcia et al., 2018).
Compared to the LLGM, the onset of deglaciation is more closely cou-
pled throughout Patagonia and centered at 17.8 ka with some local
variation, which is concurrent with warming of the mid to high lati-
tudes in the Southern Hemisphere (Kaplan et al., 2004, 2007;

Fig. 20. Glacial landforms on Tierra de Fuego. A)
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McCulloch et al., 2005a; Douglass et al., 2006; Hein et al., 2010, 2017;
Sagredo et al., 2011; Murray et al., 2012; Garcia et al., 2014, 2019;
Henriquez et al., 2015; Moreno et al., 2015, Moreno et al., 2018b,
Moreno et al.,, 2019; Bendle et al., 2017; Mendelova et al., 2017;
Vilanova et al., 2019).

4.13. Tierra del Fuego

Caldenius (1932) constructed the first map of the Darwin ice field at
the LLGM. The map has not been greatly modified since that time, and
the exact position of the ice limits around large parts of the Cordillera
Darwin are poorly constrained. Former ice extent is best understood
where glaciers flowing northeastward from the mountains contributed
to extensive lobes in the Straits of Magellan and Bahfa Inftil
(Clapperton et al., 1995; Rabassa et al., 2000; Bentley et al., 2005;
McCulloch et al., 2005a; Coronato et al., 2009; Darvill et al., 2014)
(Fig. 20). Surface exposure ages of glacial landforms in Tierra del Fuego
suggest that these lobes achieved their maximum extents by ~25 ka and
remained there until ~18 ka (McCulloch et al., 2005b; Kaplan et al.,
2008; Evenson et al., 2009). However, several belts of ice-marginal
landforms occur outside these moraines (Caldenius, 1932; Clapperton
et al., 1995; McCulloch et al., 2005a; Evenson et al., 2009), and existing
exposure age data have yielded conflicting results. Some of these outer
moraines have been assigned pre-GLGM ages, but an analysis of
weathering of erratic boulders suggests that most, if not all, of them
may date to the last glaciation (Darvill et al., 2015b). On the southern
flank of the Cordillera Darwin, outlet glaciers formed an ice stream in
Beagle Channel that terminated near the Atlantic Ocean (Caldenius,
1932; Rabassa et al., 2000, 2011; Coronato et al., 2004, 2009), but
remains undated. Moreover, there is no convincing evidence on the
Pacific Coast for the position of the GLGM ice-sheet margin, and re-
constructions range from extensive ice on the continental shelf
(Caldenius, 1932) to ice terminating close to the present-day shoreline
(Coronato et al., 2009). Given the uncertainty in GLGM positions
around most of the margin, the time of the onset of glacier recession is
difficult to pinpoint. However, on both the north and south sides of the
range, radiocarbon ages from bog sediments, as well as a limited
number of exposure ages from erratics, indicate that glaciers had re-
ceded to the interior of the mountains by ~17 ka (Heusser, 1989; Hall
et al., 2013; Menounos et al., 2013) (Fig. 20).

4.14. Synthesis

Based on current understanding, glaciers in North and Central
America during the GLGM (Table 1 and Fig. 3) appear to have fluc-
tuated near-synchronously and likely responded to the same climate
drivers. In many sectors, glaciers achieved their LLGM extents around
26-21 ka. In some cases, glacier fronts remained stable from that time
until shortly after 21 ka, when deglaciation began. This was the case for
most of the LIS and for glaciers in Alaska, the North Cascades, several
valleys in the Rocky Mountain/Yellowstone region, the Sierra Nevada,
Central Mexico, and the Cordillera de Talamanca in Costa Rica.

Key climate forcing common to all these regions is the decrease in
temperature during the GLGM. Based on a decrease in ELAs of ap-
proximately 900 m, temperatures decreased by approximately 7-8°C
across much of the North American continent. However, there are some
differences. For example, the ELA depression in Alaska was less than
500 m, and the corresponding summer temperature depression was
likewise less than in the western US. The pattern of precipitation during
the GLGM apparently was even less uniform. Evidence shows a trend
towards aridity during the GLGM in the North Cascades close to the ice
sheet and the northern Rocky Mountains, and increased precipitation to
the south in the Sierra Nevada, Basin and Range Province and southern
Rocky Mountains.

We note that the behavior of glaciers during the GLGM in North and
Central America was also asynchronous. Several glaciers advanced to
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their maximum positions several thousand years after the GLGM, at
about the time of the HS-1 period. This is the case for some sectors of
the LIS and CIS, some ranges in southern Alaska, some areas close to
Yellowstone, the Colorado Rocky Mountains, mountains of central
Mexico near the oceans, and some valleys of the Cordillera de
Talamanca in Costa Rica. Differences in glacier activity within the same
region could be due to local differences in precipitation stemming from
orographic effects, for example in some areas of the Yellowstone region,
or between oceanic and interior mountains in Mexico. Whether or not
the relationship between precipitation and the glacial local maximum is
generally applicable for the entire continent is a subject for future re-
search.

The relative consistency in glacier behavior across North and
Central America is not observed in South America. The lack of syn-
chronicity in glacier growth in the Andes might possibly be due to the
relative scarcity of data in the region or, alternatively, to its large la-
titudinal range and complex geography, which lead to large differences
in precipitation. The most arid regions of the southern tropical Andes
(southern Bolivia, northern Chile and Argentina) show the largest
temporal variability in the time of the LLGM, probably due to strong
precipitation control. In any case, the maximum local expansion of the
glaciers in most areas in the Andes does not coincide with the GLGM.
One of the few exceptions is in Tierra del Fuego, where glaciers may
have reached their maximum extents between ~25 ka and ~18 ka.
Even there, however, future work may show that moraines down-ice of
this limit may also date to the last glaciation. In the rest of the Andean
Cordillera, moraines were built during the GLGM, but the maximum
advance apparently happened up to several thousands of years earlier;
in southern Patagonia the LLGM may have occurred during MIS 3 as
few other southern high latitude regions such as Kerguelen (Jomelli
et al., 2018). We also note that the moraines that coincide with the
GLGM are not necessarily the largest, as is commonly the case in North
America where glacier fronts remained in the same position for an
extended period of time.

Glaciers in the central part of the Altiplano, in the vicinity of paleo-
lake Tauca, remained close to their LLGM positions until the end of H-1
(Martin et al., 2018). Elevated precipitation during H-1 apparently
sustained glaciers until the end of that period. In summary, throughout
the Andes, the GLGM seem to be marked by an expansion of glaciers,
but that advance was not the largest everywhere. Across the Andes, this
period coincided with a clear drop in temperature of ~3-8°C based on
ELA depressions. Those values are consistent with temperature reduc-
tions inferred from ELA depressions in North America. Some local in-
dicators, for example the Sajsi paleo-lake on the Altiplano show that the
GLGM was characterized by slightly higher precipitation than today
(Placzek et al., 2006).

5. The Impact of Heinrich-1 Stadial (HS-1) (17.5-14.6 ka) on
American Glaciers

5.1. Heinrich-1 Stadial

The second period analyzed is the Heinrich 1 Stadial (HS-1), which
is called the ‘Oldest Dryas’ in Scandinavia. The term HS-1 comes from
records of marine sediments that show the massive discharge of ice-
bergs into the North Atlantic during this period (Heinrich, 1988),
mainly from the Hudson Bay/Strait region, the main drainage route for
the LIS (Hemming, 2004). The use of the term as a chronological unit
has been criticized (Andrews and Voelker, 2018) from a sedimentolo-
gical point of view. The term Oldest Dryas, although widely used, has
also been criticized because it is not clearly delimited chronologically
(Rasmussen et al., 2014). In this paper, we follow the paleoclimate and
paleoglaciological criteria of Denton et al. (2006), who delimit HS-1
between the Heinrich 1 “event” (17.5 ka) and the beginning of the
Bolling-Allergd interstadial (14.6 ka). They refer to this period as the
‘Mystery Interval’ due to the fact that, although CO, concentrations in
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the atmosphere increased during this time, temperature dropped
sharply in the Northern Hemisphere and in the tropics. In our study, we
opt for the term HS-1 for the same time period, following the standard
differentiation between “event” and “stadial” (Rasmussen et al., 2014;
Heath et al., 2018).

HS-1 is a climate event that interrupted deglaciation. In the North
Atlantic region, temperatures fell drastically in winter, sea ice ex-
panded, and the ocean cooled (Barker et al., 2010). Atlantic Meridional
Overturning Circulation (AMOC) was sharply reduced or even collapsed
(McManus et al., 2004; Bohm et al., 2015), and many mountain glaciers
advanced in Europe (Gschnitz stadial in the Alps; Ivy-Ochs, 2015), at
least at the beginning of HS-1. Although the European ice sheets de-
creased in size during this period (Toucanne et al., 2015), it is clear that
climate during HS-1 varied. There were periods with hot summers that
caused massive glacier melting (Thornalley et al., 2010; Williams et al.,
2012). The Asian monsoon disappeared (Wang et al., 2008), the South
American monsoon intensified (Strikis et al., 2015, 2018), and the
Southern Hemisphere westerlies were displaced polewards (Denton
et al., 2010). Temperatures in Antarctica increased, along with atmo-
spheric CO, concentrations (Monnin et al., 2001; Ahn et al., 2012), due
to Southern Ocean ventilation (Barker et al., 2009). HS-1 is the period
that best demonstrates the close relationships among AMOC, atmo-
spheric CO, and temperatures in Antarctica (Deaney et al., 2017).

5.2. Laurentide Ice Sheet

The extent of glaciers and ice sheets during HS-1 is summarized in
Fig. 4. Although explanations of Heinrich events have tended to focus
on the Hudson Strait ice stream, it is clear that there are sedimentolo-
gical differences both within and between individual Heinrich ‘layers,’
including variable source areas (Andrews et al., 1998, 2012; Piper and
Skene, 1998; Hemming, 2004; Tripsanas and Piper, 2008; Rashid et al.,
2012; Roger et al., 2013; Andrews and Voelker, 2018). Thus, it is likely
that other ice streams along the eastern margin of the LIS, and possibly
even farther afield at its northern margin (Stokes et al., 2005), may
have contributed, at least in part, to some Heinrich-like events
(Andrews et al., 1998, 2012; Piper and Skene, 1998). However, the
extent to which these events were correlative is unclear, as are the
wider impacts of Heinrich events on the dynamics of the LIS. For ex-
ample, readvances or stillstands elsewhere in the Americas have been
linked to HS-1, and yet evidence from the LIS is comparatively scarce.

Clark (1994) was one of the first to propose a link between Heinrich
events in the Hudson Strait and the advance of ice margins/lobes
resting on soft deformable sediments along the southern margin of the
ice sheet. Mooers and Lehr (1997) also noted the possibility that the
advance and rapid retreat of lobes in the western Lake Superior region
may have been correlative with Heinrich events 2 and 1, but this idea
has since received relatively little attention and there is little clear
evidence for major re-advances of the LIS during or soon after HS-1
(Heath et al., 2018). Rather, the most likely impact of HS-1 was to
lower the ice surface over Hudson Bay and drive changes in the location
of ice dispersal centers, with subsequent effects on ice-flow patterns
(Margold et al., 2018). For example, Dyke et al. (2002) suggest that the
drawdown of ice during HS-1 was likely sufficient to displace the
Labrador ice divide some 900 km eastward from the coast of Hudson
Bay and cause a major flow reorganization (see also Veillette et al.,
1999). There is also evidence that parts of the ice sheet thinned rapidly
in coastal Maine during the latter part of HS-1 (Hall et al., 2017b;
Koester et al., 2017).

There is also clear evidence from several regions that the ice sheet
retreated during HS-1, punctuated by brief readvances or stillstands.
For example, recalculated 19Be data (Balco and Schaefer, 2006), cou-
pled with the New England varve chronology (Ridge, 2004), indicate
retreat of the ice margin in the northeastern United States. >°Cl ex-
posure ages from the Adirondack Moutains (Barth et al., 2019) suggest
that the ice sheet may have begun to thin around 19.9 + 0.5 ka.
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Thinning continued throughout HS-1 and accelerated between
15.5 + 0.4 ka and 14.3 + 0.4 ka (see also Section 5.2). Rapid ice sheet
thinning has also been inferred in coastal Maine during the latter part of
HS-1 (Hall et al., 2017b; Koester et al., 2017).

5.3. Alaska

Although detailed moraine chronologies needed to fully explain
glacier change in Alaska during HS-1 do not exist, there is patchy in-
formation on ice extent at that time. In most locations where reces-
sional moraines have been dated, some stillstands or re-advances have
been inferred during HS-1. In the Brooks Range, a prominent reces-
sional moraine has been dated to ~17 ka (Pendleton et al., 2015), and
the Elmendorf Moraine in south-central Alaska dates to ~16.5 ka
(Kopczynski et al., 2017). Given the number of recessional moraines in
most valleys, for example throughout the Alaska Range, the Ahklun
Mountains, and the Kenai Peninsula, it is difficult to know if these
glacial stabilizations necessarily relate to cooling triggered in the North
Atlantic Ocean. Rather, they could be related to a number of factors that
could cause glacier recession to be interrupted by re-advances or still-
stands (e.g. isostatic rebound, solar variability, glacier hypsometric
effects). Thus, attributing them per se to North Atlantic stadial condi-
tions at this time is premature. In fact, in spite of some interruptions,
there was overall significant recession of glaciers throughout HS-1 in
Alaska. Most glaciers in Alaska with reasonable chronological con-
straints experienced net retreat during HS-1.

5.4. Cordilleran Ice Sheet and the North Cascades

Alpine glaciers receded from maximum positions during the Port
Moody interstade, which began after 21.4 ka (Riedel et al., 2010). Two
glacial events in this region correlate with HS-1: construction of alpine
glacier end moraines and the advance of the CIS to its maximum limit.
Deposition of ice-rafted detritus at a deep-sea core site west of Van-
couver Island began about 17 ka and abruptly terminated at about 16.2
ka, recording the rapid advance and retreat of the western margin of the
CIS (Cosma et al., 2008). Studies west of Haida Gwaii (Blaise et al.,
1990) and near the southwestern margin of the CIS (Porter and
Swanson, 1998; Troost, 2016) also indicate that it reached its maximum
extent several thousand years after the GLGM. Glaciers in two mountain
valleys in the southern North Cascades retreated from moraines closely
nested inside the GLGM moraines. However, *°Cl ages on the Domerie IT
(17.9-14.7 ka) and the Leavenworth II moraines (17.2-15.0 ka) have
large uncertainties, and the moraine ages may or may not be associated
with HS-1 (Porter, 1976; Kaufman et al., 2004; Porter and Swanson,
2008).

The climate in the North Cascades during HS-1 is not well under-
stood due to a lack of age control on landforms, limited paleoecological
data, and the large influence of the continental ice sheets on climate.
However, glacial ELAs associated with potential HS-1 moraines located
well to the south of the CIS terminus were slightly above the GLGM
maximum (Porter, 1976; Kaufman et al., 2004; Porter and Swanson,
2008). In areas inundated by the CIS to the north, alpine glaciers re-
treated to valley heads, presumably due to lower precipitation as the
continental ice sheets expanded to cover most of Canada and northern
Washington. Climate models and pollen data indicate that at 16 ka
mean annual air temperature was 4-7°C cooler than today (Heusser,
1977; Kutzbach, 1987; Liu et al., 2009).

5.5. Rocky Mountain/Yellowstone region

In some areas of this region, glacier retreat began toward the end of
the GLGM; in other areas, glaciers maintained their fronts or re-ad-
vanced at ~16.5 ka, although with a great degree of local variability,
and then immediately retreated. Glaciers in some valleys near the
margins of the Yellowstone Ice Cap reached their local maximum extent
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at ~17 ka, then rapidly retreated at ca. 15 ka when several external
climate forcings coincided (Licciardi and Pierce, 2018) (Figs. 11 and
12). Moraines dated to the HS-1 period are common in valleys along the
eastern slope of the Teton Range (Licciardi and Pierce, 2018) and in the
Wind River Range (Dahms et al., 2018, 2019; Marcott et al., 2019). In
the Wind River Range, these moraines are ~1-2 km downvalley from
cirque headwalls in 14 valleys (Dahms et al., 2010). Ages from these
moraines in Stough Basin, Cirque of the Towers and Temple Lake
cluster around ~15.5 ka (Fig. 10) (Dahms et al., 2018; Marcott et al.,
2019). Subsequently, a second period of regional deglaciation was well
under way after ~15 ka (Larsen et al., 2016; Dahms et al., 2018; Pierce
et al., 2018).

Glaciers in some valleys in the Colorado Rocky Mountains receded
during HS-1. In contrast, many other valleys contain end moraines
dating to 17-16 ka. Ages on polished bedrock surfaces up-valley of these
moraines have yielded ages that show that the glaciers retreated shortly
thereafter (Young et al., 2011; Shakun et al., 2015a; Leonard et al.,
2017a, 2017b; Laabs et al., 2019, submitted). Ward et al. (2009) sug-
gest that there was a stillstand or possible re-advance around 17-15 ka
in the Colorado Front Range, interrupting overall post-GLGM recession.

5.6. Sierra Nevada

There is strong evidence for an advance of glaciers in the Sierra
Nevada during HS-1 — the Tioga 4 advance in local terminology
(Phillips et al., 1996) — but HS-1 was not a time of extensive glaciation.
As described in Section 3.5, retreat from the GLGM maximum began
gradually at about 19 ka. It accelerated rapidly after 18 ka, and glaciers
receded past Tioga 4 glacier margins by about 17 ka (Phillips, 2017).
Retreat then reversed and glaciers readvanced to Tioga 4 positions by
16.2 ka (Fig. 14). The ELA depression for this advance was about 900
m, compared to the GLGM ELA depression of about 1200 m. The Tioga
4 advance apparently was short-lived; by 15.5 ka, the range was ef-
fectively deglaciated. It is clear from the simultaneous expansion of
Lake Lahontan and the Tioga 4 glaciers that increased precipitation
played a major role in glacier expansion at this time.

The fact that Lake Lahontan was relatively small during Tioga 3 (21-
19 ka, the LLGM), while glaciers were more extensive, shows that Tioga
3 was colder and drier than Tioga 4. Plummer (2002) estimated that
Tioga 4 precipitation was 160% greater than today and temperature
was 3°C cooler based on the inferred size of Searles Lake at that time.
Had he used the extent of Lake Lahontan in his analysis, the increase in
precipitation would have been even larger. Phillips (2017) suggested
that the large extent of sea ice in the North Atlantic during HS-1 led to
greatly increased precipitation and cooler temperatures in California
through an atmospheric teleconnection. An impediment to further
analysis of these topics is the chronological inconsistencies between the
dating of the Sierra glacial record, nearby marine cores, and lacustrine
records (Phillips, 2017). More confidence in the chronology could allow
researchers to resolve questions of climate leads and lags, and de-
termine whether the apparent differences in timing are the result of
chronological imprecision or latitudinal paleoclimate gradients.

5.7. Mexico and Central America

Glaciers in central Mexico remained at or near their maximum po-
sitions throughout HS-1. In the interior mountains (e.g. Iztaccihuatl),
glaciers were slightly smaller during HS-1 (ELA = 4040 m asl) than at
the LLGM (ELA = 3940 m asl, from 21 ka to 17 ka) (Vazquez-Selem and
Lachniet, 2017). Recession at this time is not recorded in mountains
near the Pacific Ocean, where a low ELA persisted until 15-14 ka. In-
deed, during HS-1, ELAs were ca. 400-650 m lower on mountains near
the coast than in the interior, which suggests a strong precipitation
gradient from the coast to the interior and overall drier conditions in
the interior during HS-1 (Lachniet et al., 2013). In general, the end of
HS-1 is coeval with the onset of glacier recession ~14.5 ka in central
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Mexico. Existing evidence at Cerro Chirrip6, Costa Rica, indicates
moraine formation between 18.5 ka and 17 ka (Cunningham et al.,
2019), potentially during the earlier part of HS-1. If the summit area
was ice-free by 15.2 ka, as suggested by Cunningham et al. (2019),
glacier recession prevailed during the second part of HS-1 (as defined
by Hodell et al., 2017).

5.8. Northern Andes

Most of the glacier advances in the northern tropical Andes were
dated between the end of the GLGM and the end of HS-1 (~15 ka). In
the Sierra Nevada of the Venezuelan Andes, some valleys were com-
pletely deglaciated by ~16.5 ka (Angel et al., 2016). In others, glaciers
advanced ~17 ka (modified ages of Angel, 2016). In the Sierra Santo
Domingo, maximum advances are dated to ~17.5 ka (modified ages
from Wesnousky et al., 2012; Angel, 2016). In the Sierra del Norte they
date to between 18 ka and 15.5 ka (modified ages from Wesnousky
et al., 2012; Angel, 2016), and in the Cordillera de Trujillo, to around
18 ka (*°Be ages modified ages from those of Angel, 2016). Some ad-
vances in the Colombian Andes may be related to HS-1. This is the case
in the Bogoté Plain, where a moraine complex has been dated to be-
tween 18 ka and 14.5 ka (Helmens, 1988; Helmens et al., 1997), and in
the Central Cordillera, where peat overlying a moraine complex yielded
a minimum age of 16-15 ka (Thouret et al., 1996). There are moraines
in the Ecuadorian Andes that are related to HS-1, for example in Cajas
National Park, vicinity of Pallcacocha lake above 3700 m asl, where a
moraine was radiocarbon dated to 17-14.5 cal ka BP (Hansen et al.,
2003).

Most glacier advances in the northern tropical Andes have been
dated to ~18-15 ka based on '°Be ages. However, the scarcity of pa-
leoclimatic information limits our ability to estimate the regional HS-1
climate and to compare it to GLGM conditions. Rull (1998) proposed a
cold event (~7°C cooler than today), locally called as El Caballo Stadial,
at 16.5 ka based on a palynological record from the central Mérida
Andes in Venezuela. Similarly, Hooghiemstra and Ran, 1994 proposed
the Fliquene Stadial at a similar time in the Colombian Andes based on
a palynological study in the Bogota Plain. In contrast, Brunschon and
Behling (2009) concluded that both temperature and precipitation in
the southern Ecuadorian Andes were higher during the period 16.2-
14.7 cal yr BP than during the GLGM.

5.9. Peru and Bolivia

Three moraines near Lake Junin have cosmogenic ages of ~21 ka to
18 ka (Smith et al., 2005), providing evidence of an advance prior to
HS-1. In contrast, the Galeno moraines in the Cajamarca region have
slightly younger ages and have complete inset lateral/terminal loops
with an average age of 19 ka. The Juellesh and Tuco valleys in the
Cordillera Blanca have inner and outer moraine loops that date, re-
spectively, to ~18.8 + 2.0 ka and ~18.7 = 1.6 ka (Smith and Rodbell,
2010). Glasser et al. (2009) presented similar ages (~18.3 = 1.4 ka) for
an outer lateral moraine in the Tuco valley. An inner lateral moraine
(M4 of Smith and Rodbell, 2010) has been dated to ~18.8 + 2.3 ka,
and Glasser et al. (2009) reported similar ages on the same moraine
(~17.9 £ 0.9 ka). Revised ages on various stages of deglaciation of the
Cordillera Huayhuash are centered on ~17.8-16.5 ka (Hall et al., 2009).
Similarly, dated boulders on the Huara Loma, Coropuna, and Wara
Wara moraines in Bolivia may record post-GLGM advances between
19.4 ka and 18.2 ka (Zech et al., 2010; May et al., 2011; Martin et al.,
2018).

Many valleys in central Peru and Bolivia contain evidence of glacier
advances or persistent stillstands during HS-1 (~17.5-14.6 ka) (synth-
eses in Mark et al., 2017, and Martin et al., 2018). The mean exposure
ages of all groups of moraine boulders in this region that fall within HS-
1is 16.1 * 1.1 ka. A stillstand synchronous with HS-1 is also indicated
by cosmogenic *He ages of moraines on the Coropuna volcano,
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southern Peru (Bromley et al., 2009). Radiocarbon and cosmogenic
ages from the Cordillera Vilcanota and the HualcaHualca volcano
(Fig. 17) provide independent evidence that glaciers in southern Peru
advanced sometime after ~18.0-16.8 ka (Mercer and Palacios, 1977;
Alcala-Reygosa et al., 2017), and radiocarbon ages from the Altiplano
indicate an advance occurred there from ~17 ka to 15.4 ka (Clapperton
et al., 1997b; Clapperton, 1998).

Ice core records from Huascaran, Peru, suggest that HS-1 was the
coldest period of the past ~19 ka (Thompson et al., 1995), but re-
searchers have argued recently that the 8'20 signal in tropical ice does
not provide a pure temperature signal (Quesada et al., 2015). The
cooling inferred from reconstructions of paleo-ELAs during HS-1 is
around 3°C in the central Altiplano (Martin et al., 2018).

The northern equatorial Andes of Peru appear to have been wetter
during most of HS-1 (Mollier-Vogel et al., 2013), whereas speleothem
records in central Peru suggest that the local climate became abruptly
drier at ~16 ka (Kanner et al., 2012; Mollier-Vogel et al., 2013). Lake-
level fluctuations provide strong evidence for pronounced shifts in
precipitation across the central Andes during this period (Baker et al.,
2001a, 2001b; Placzek et al., 2006; Blard et al., 2011). Farther south,
over the Altiplano, shoreline reconstructions demonstrate that the first
part of HS-1 (~18-16.5 ka) was similar to or drier than today. However,
during the Lake Tauca highstand in the second part of HS-1 (16.5-14.5
ka) precipitation was ca. 130% higher than today (Placzek et al., 2013;
Martin et al., 2018). Some of the GLGM and older moraines in this part
of the Altiplano may have been overridden during this wet phase.
Martin et al. (2018) established that the downward shift in ELA at this
time was amplified in valleys that are near the latitudinal center of
paleo-lake Tauca, resulting from a significant local increase in pre-
cipitation.

5.10. Southern Bolivia and Northern Chile

During HS-1, there was a sharp spatial gradient in climate between
Cerro Tunupa, which is located at the geographic center of Lake Tauca,
and Cerro Uturuncu (Bolivia) and elsewhere north of the Arid Diagonal
(Ward et al., 2017; Martin et al., 2018). Blard et al. (2014) describe a
900 m gradient in ELAs between Cerro Tunupa and Cerro Uturuncu
based on the Tauca-phase moraines at each site. The spatial gradient in
temperature between these sites (Ammann et al., 2001) is not sufficient
to explain the ELA difference, which implies the existence of a strong
spatial gradient in precipitation across the southern margin of Lake
Tauca. Further work by Martin et al. (2018) quantified this precipita-
tion gradient, confirming that it was significantly drier in the southern
portion of the Lake Tauca basin. The presence of this drying trend to the
south and west is supported by the lack of a clear Tauca-phase trans-
gression at Pozuelos Basin in the Puna region, which is at a similar
latitude to Cerro Uturuncu and El Tatio (McGlue et al., 2013). Based on
the clustering of '°Be and 3°Cl exposure ages on LLGM moraines
(Section 4.10), Tauca-phase moraines appear to be either absent or
restricted to higher parts of valleys at El Tatio, Cerro La Torta, and
Chajnantor Plateau (Ward et al., 2017), as well as at several sites on the
central Puna Plateau (Luna et al., 2018) and the western slope of Ne-
vado Chani (24°S) in Argentina (Martini et al., 2017a). The precipita-
tion gradient is consistent with paleo-vegetation proxy records that
indicate an approximate doubling of modern precipitation, from ~300
to ~600 mm/yr (Grosjean et al., 2001; Maldonado et al., 2005; Gayo
et al., 2012), in the northern Arid Diagonal and adjacent Andes during
the Tauca highstand. South of the Arid Diagonal, at Valle de Encierro
and Cordén de la Rosa, ages of 17 ka from highly recessed locations
indicate a stillstand or minor advance during HS-1, followed by full
deglaciation (Ward et al., 2017).

5.11. Central Andes of Argentina

Initial deglaciation in the Central Andes after the LLGM was
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followed by renewed glacier expansion during HS-1. Moraines that
mark the HS-1 limit are found up-valley of those constructed during the
GLGM. North of the Arid Diagonal, glacier expansion during HS-1 co-
incided with the Tauca paleo-lake (Blard et al., 2011; Placzek et al.,
2013). Glaciers advanced in the Laguna Grande valley in the Tres La-
gunas area between ~17 ka and ~15 ka (Zech et al., 2017), the east and
west sides of Nevado de Chaii ~15 ka (Fig. 19) (Martini et al., 2017a),
and in the Sierra de Quilmes, between ~18 ka and ~15 ka (Zech et al.,
2017). An exception to these findings comes from Sierra de Aconquija
where renewed glacier growth appears to have occurred after the HS-1
stadial (D’Arcy et al., 2019). South of the Arid Diagonal, there is almost
no evidence of glacial limits dating to HS-1. Just one sample from the La
Angostura I moraine in the Cordon del Plata has been dated to ~15 ka
(Moreiras et al., 2017). Moraines up-valley of the GLGM limit in the Las
Lenas valley and Ansilta Range have not yet been dated (Terrizzano
et al., 2017; Zech et al., 2017).

5.12. Patagonia

At the time of the HS-1 stadial, the Patagonian region was experi-
encing widespread warming and deglaciation (Moreno et al., 2015;
Bertrand et al., 2008). Rapid warming began at 17.8 ka in northwestern
Patagonia and approached average interglacial temperatures by 16.8 ka
(Moreno et al., 2015). Glaciers in northwestern Patagonia retreated out
of the lowlands shortly before ~17.8 ka and into high mountain cirques
above 800 m asl by 16.7 ka (Denton et al., 1999; Moreno et al., 2015).
The abrupt and synchronous withdrawal of many glacier lobes in
northwestern Patagonia was contemporaneous with the rapid expan-
sion of temperate rainforests (Heusser et al., 1999; Moreno et al., 1999),
suggesting pronounced warming at 17.8 ka coupled with a poleward
shift of the southern westerlies between 17.8 ka and 16.8 ka (Pesce and
Moreno, 2014; Moreno et al., 2018a). However, on the east flank of the
Andes (Cisnes valley, 44°S), it has been suggested that glaciers started
retreating somewhat earlier, at ~19 ka. At this site, it has been esti-
mated that the ice had diminished to 40% of its local maximum extent
by ~16.9 ka (Weller et al., 2014; Garcia et al., 2019).

Farther south, in central Patagonia, lake cores from two small basin
(Villa-Martinez et al., 2012; Henriquez et al., 2017) show that the Lago
Cochrane/Pueyrredén ice lobe (47.5°S) retreated over 90 km into the
Chacabuco Valley between ~21 ka (Rio Blanco moraines; Hein et al.,
2010) and 19.4 ka. Ice receded an additional ~60 km to reach a posi-
tion close to modern glacier limits by around 16-15 ka (Turner et al.,
2005; Hein et al., 2010; Boex et al., 2013; Mendelova et al., 2017;
Davies et al., 2018; Thorndycraft et al., 2019). Retreat east of the
shrinking ice sheet in the Lago Cochrane sector of central Patagonia
occurred without discernable warming (Henriquez et al., 2017). Almost
certainly, however, this retreat was facilitated by calving in deep pro-
glacial lakes that formed in the over-deepened Cochrane/Pueyrredén
and General Carrera/Buenos Aires basins as the glaciers withdrew
(Turner et al., 2005; Hein et al., 2010; Bourgois et al., 2016; Glasser
et al., 2016; Davies et al., 2018; Thorndycraft et al., 2019). At Lago
General Carrera/Buenos Aires (46.5°S), glacier retreat from the Fenix I
moraine commenced ~18 ka, but was interrupted by a readvance to the
Menucos moraines at ~17.7 ka. An annually resolved lake sediment
record, tied to a calendar-year timescale by the presence of the well
dated Ho tephra erupted from Volcan Hudson (17,378 = 118 cal yr BP),
indicates that ice remained close to the east end of the lake until after
16.9 ka, before retreating back into the mountains (Kaplan et al., 2004;
Douglass et al., 2006; Bendle et al., 2017, 2019). Bendle et al. (2019)
suggest that the onset of deglaciation in central Patagonia was a direct
result of the HS-1 event. They hypothesize that warming at the start of
HS-1 occurred due to rapid poleward migration of southern westerly
winds, which increased solar radiation and ablation at the ice sheet
surface. They linked warming and accelerated deglaciation to the
oceanic bipolar seesaw, which delayed Southern Hemisphere warming
following the slowdown of the Atlantic meridional overturning at the
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start of HS-1 (Bendle et al., 2019).

Determining whether “early LGM” and “early deglaciation” are
correct interpretations of glacier activity in central Patagonia (44°-49°S)
(Van Daele et al., 2016; Garcia et al., 2019) is important for de-
termining whether local (glaciological, reworking of old organic
matter) or regional (climatic) mechanisms are responsible for apparent
differences in timing, rate, and magnitude of glacier fluctuations prior
to and during the GLGM and Termination I (Vilanova et al., 2019).
Another problem emerges from studies of lake sediments from the
eastern slopes of the Andes in central Patagonia. Based on an analysis of
seismic data and lake sediment cores from Lago Castor (Fig. 1), Van
Daele et al. (2016) concluded that the Coyhaique glacier lobe achieved
its maximum extent and retreated before the GLGM. The concepts of
‘early LGM* and ’early deglaciation‘ rely heavily on the interpretation
and selective rejection of anomalously old radiocarbon ages, which
include results as old as 43,100 + 3600 '*C yr BP in the clastic-domi-
nated and intensely reworked portion of the Lago Castor cores beneath
the HO tephra, which has been radiocarbon dated to 17,300 cal yr BP
(Weller et al., 2014). This enigmatic radiocarbon chronology has not
been corroborated by more recent studies in the Rio Pollux valley,
where Moreno et al. (2019) and Vilanova et al. (2019) have reported
stratigraphic, geochronologic, and palynological results from small,
closed-basin lakes to constrain the timing and extent of the Coyhaique
glacier lobe during Termination I. These studies point to the aban-
donment of the final LLGM margins at ~17.9 ka, ~600 years before the
reported age of the HO tephra. The similarities between northern and
southern Patagonia (see below), and contrasts with the Rio Cisnes and
Lago Cochrane/Pueyrredén glacier lobes, suggest that the different
behavior of the latter might arise from differences in their topographic
setting, ice divide migration (Mendelova et al., 2019), or differential
calving in large proglacial lakes in the Central Patagonian Andes during
the final stage of the LLGM.

In southern Patagonia, the Lago Argentino lobe (50°S) retreated at
least 60 km from its LLGM by 16.2 ka (Strelin et al., 2011). A nearby
mountain glacier at Rio Guanaco (50°S) retreated to half its extent
between 18.9 ka and 17 ka, suggesting a temperature increase of
~1.5°C, or about one-third of the total deglacial warming relative to
today (Murray et al., 2012). Similarly, the Ultima Esperanza ice lobe
retreated after 17.5 ka, but with a short period of stabilization at ~16.9-
16.2 ka (Sagredo et al., 2011).

5.13. Tierra del Fuego

HS-1 in the Cordillera Darwin was characterized by very rapid
glacier recession with no evidence of stillstands (Hall et al., 2013,
2017a). Surface exposure ages on boulders indicate that ice was at the
innermost GLGM moraine at the shore of Bahia Indtil at ~18 ka
(McCulloch et al., 2005b; Kaplan et al., 2008; Hall et al., 2013), but
retreated shortly thereafter (McCulloch et al., 2005b). Radiocarbon
ages from peat bogs near present-day sea level indicate that the Cor-
dillera Darwin icefield had retreated inside fjords by 16.8 ka (Hall et al.,
2013, 2017b). On the north side of the Cordillera Darwin, this recession
was ~130 km from its LLGL. In the Fuegian Andes, two '°Be ages from
glacially eroded bedrock in front of an alpine glacier indicate that re-
cession was well underway by ~17.8 ka and had reached the late-
glacial position as early as ~16.7 ka (Menounos et al., 2013). Whether
this glacier was part of the Cordillera Darwin icefield or a separate ice
mass at the GLGM remains uncertain (Coronato, 1995; Menounos et al.,
2013). In any case, glaciers in the region responded to HS-1 by rapidly
retreating, as was the case at some other Southern Hemisphere loca-
tions (Putnam et al., 2013).

5.14. Synthesis

Glaciers in most of North and Central America began to retreat from
their GLGM positions by about 21 ka (Table 2 and Fig. 4). In some areas
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(e.g. Wind River Range), they suffered the same mass losses after ~21
ka as other glaciers, but apparently re-advanced during HS-1. In other
regions (e.g. Yellowstone Ice Cap, the Colorado Rocky Mountains and
on some Mexican volcanoes), glaciers reached their maximum extents
during HS-1. Some of these glaciers may have advanced from the GLGM
to HS-1 and surpassed their GLGM limits. This possibility, however,
must be considered hypothetical, as it is inherently difficult to verify.

Interestingly, one of the Northern Hemisphere regions that appears
to have been least affected by the HS-1 event, at least in terms of the
ice-marginal fluctuations, is the LIS. Rather, the ice sheet thinned and
retreated during this period. It is likely that internal flow patterns and
ice divides were impacted by drawdown induced by the Hudson Strait
ice stream. There are few data from Alaska to evaluate the effects of HS-
1 on glaciers, but there is some evidence of advances interrupting
overall retreat during this interval. The southern sector of the CIS and a
number of glaciers in Colorado and those proximal to the Yellowstone
Ice Cap area reached their maximum extents during HS-1. In a few
valleys in the North Cascades south of the CIS limit, possible HS-1
moraines lie upvalley of GLGM moraines, although data are sparse. A
clear advance immediately following HS-1 has been documented in the
Sierra Nevada and the Wind River Range. In the Sierra, HS-1 moraines,
locally termed Tioga 4, lie well inside GLGM moraines. These moraines
record an ELA depression of 900 m, which is 300 m less than during the
GLGM. In the Wind River Range, the Older Dryas/HS-1 moraines lie 19-
27 km upvalley of LLGM/GLGM moraines. In the interior mountains of
Central Mexico and Costa Rica, moraines dating to near HS-1 lie inside
GLGM moraines. However, glaciers in mountains close to the oceans
remained at, or advanced past, their GLGM limits until the end of HS-1.

In the Sierra Nevada, temperatures were 3°C lower than today
during HS-1, but clearly precipitation was increased. In other regions,
data appear to confirm the decrease in temperature in the Sierra
Nevada, but there is little information on precipitation.

Glaciers in the tropical Andes built significant moraine complexes
during HS-1, attesting to a significant stillstand or readvance. In the
northern Andes, numerous moraines have been dated to this period,
reflecting an interruption of the longer-term of trend glacier retreat. HS-
1 advances are widespread and significant in central and southern Peru
and in Bolivia. Although the first part of the HS-1 stadial in these areas
was dry, the second part was wet, with, on average, a two-fold increase
in precipitation above modern values. The precipitation increase may
have been five-fold around the Altiplano paleo-lakes (Tauca highstand
from 16.5 ka to 14.5 ka). This precipitation control on glacier mass
balance is a strong driver of the spatial variability of ELA reductions
during HS-1. Several of the HS-1 moraines in the region appear to have
been constructed by glaciers that were very close to LLGM moraines.
HS-1 moraines are also present in the Arid Diagonal, although aridity
increased towards the south, resulting in a more limited glacier extent
in that area. In some cases, glaciers in the Arid Diagonal disappeared
during HS-1. Glaciers advanced during HS-1 in the Central Andes of
Argentina after a long period of retreat, and at the same time as the
Tauca highstand.

In contrast, glaciers in the temperate and subpolar Andes aban-
doned their LGM positions and underwent sustained or step-wise re-
cession during HS-1. In northwestern Patagonia, climate warmed ra-
pidly and experienced a significant decline in precipitation, driven by a
southward shift of the southern westerly winds (Pesce and Moreno,
2014; Moreno et al., 2015, 2018; Henriquez et al., 2017; Vilanova et al.,
2019). The magnitude of these changes appears to decline south of
45°S, modulated by the regional cooling effect of residual ice masses in
sectors adjacent to the eastern margins of the Patagonian ice sheet
(Henriquez et al., 2017). The difference in glacier behavior between the
tropical Andes and Patagonia and Tierra del Fuego during HS-1 could
be due to two causes. First, the significant increase in precipitation in
the tropical Andes during HS-1 could be the main cause of the glacier
advances in that region. Second, Patagonia and Tierra del Fuego may
have been too distant from the events responsible for HS-1, which are
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closely related to North Atlantic circulation; rather they may have been
more affected by Antarctica and southern westerly winds. The two ef-
fects may have even converged, dividing the continent into two dif-
ferent glacial regimes during HS-1 (Sugden et al., 2005).

6. Evolution of American Glaciers during the Bolling-Allergd
Interstadial (B-A) and the Antarctic Cold Reversal (ACR) (14.6-12.9
ka)

6.1. Bolling-Allergd Interstadial and the Antarctic Cold Reversal

The term ‘Bglling-Allergd’ (B-A) is derived from recognition of two
warm Late Glacial palynological zones (the Bglling and the Allergd)
between the HS-1 and Younger Dryas. The use of this term for a
chronological period has been criticized from a palynological point of
view (De Klerk, 2004). Nevertheless, warming during this period has
been identified (Lowe et al., 2001) and firmly dated in the GI-1
Greenland ice core to 14.6 ka to 12.9 ka (Rasmussen et al., 2014), and
the term Bglling-Allergd interstadial (abbreviated 'B-A‘) is customarily
applied to this period.

The B-A period began with reinforcement of the AMOC (McManus
et al.,, 2004) and a marked increase in atmospheric CO, (Chen et al.,
2015) and methane (Rosen et al., 2014); these conditions persisted
through this period (Monnin et al., 2001). Climate rapidly warmed, at
least around the North Atlantic (Clark et al., 2012). The AMOC re-
mained vigorous throughout the B-A period (Deaney et al., 2017), and
only a few cold events interrupted it in the Northern Hemisphere
(Rasmussen et al., 2014). Sea ice retreated to the north (Denton et al.,
2005), and glaciers in Europe thinned and retreated (for example in the
Alps; Ivy-Ochs, 2015). The Asian monsoon strengthened to a level si-
milar to the present (Sinha et al., 2005; Wang et al., 2008). It seems that
the changes in the oceans preceded changes in the atmosphere, and the
oceans had a decisive influence on Northern Hemisphere warming
(Thiagarajan et al., 2014). The changes in the oceans were possibly
caused by a period of intense melt in Antarctica just before the B-A
(Weaver et al., 2003; Weber et al., 2014). The process that drove the B-
A would then be the opposite of that which caused HS-1, when the
melting of the northern ice sheets led to warming in the Southern
Hemisphere (Zhang et al., 2016). During the B-A, cooling in Antarctica
caused increased sea ice cover in the surrounding ocean, causing the
southern westerlies and the Intertropical Convergence Zone (ITCZ) to
migrate northward, and strengthening the AMOC, which in turn caused
warming in the Northern Hemisphere (Pedro et al., 2015; Zhang et al.,
2016).

The cold period in the south has been called the Antarctic Cold
Reversal (ACR). We analyze the B-A and ACR together because they
occurred around the same time, although the boundary between
cooling in the south and the warming in the north is not well defined
(Pedro et al., 2015). The ACR has been well documented in Antarctic
ice cores, and a clear bipolar seesaw is observed in relation to Green-
land ice cores (Blunier et al., 1997, 1998; Pedro et al., 2011). Cooling in
the Southern Hemisphere is apparent up to 40° S (Pedro et al., 2015),
resulting in widespread glacier advance (Putnam et al, 2010;
Shulmeister et al., 2019). There is also a clear cooling signal in tropical
areas, at least in high Andean regions (Jomelli et al., 2014, 2016).

6.2. Laurentide Ice Sheet

The hemispheric extent of glaciation during the B-A is summarized
in Fig. 5. The Bglling-Allergd interstadial is characterized by enhanced
ablation in marginal areas of the LIS (Ullman et al., 2015b) and a
marked acceleration in the rate of retreat, most notably along the
southern and western margins, but with minimal retreat along its
northern margin (Dyke and Prest, 1987; Dyke, 2004; Stokes, 2017). As
a result, the LIS is likely to have fully separated from the CIS by the end
of the interstadial, although precise dating of the opening of the ‘ice-
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free corridor’ remains a challenge (Dyke and Prest, 1987; Gowan, 2013;
Dixon, 2015; Pedersen et al., 2016). It is worth noting, however, that
positive feedback mechanisms related to ice surface lowering and sur-
face mass balance are likely to have resulted in the rapid ‘collapse’ of
the saddle between the LIS and the CIS, which some have hypothesized
was the source of Meltwater Pulse 1A (Gregoire et al., 2012).

The rapid retreat of the southern and western margins of the LIS was
also likely aided by the development of proglacial lakes that facilitated
calving and the draw-down of ice, particularly at the southern margin
(Andrews, 1973; Dyke and Prest, 1987; Cutler et al., 2001). Moreover,
the rapid retreat of the LIS during this time period led to major changes
in the trajectory of ice streams at the western and southern margins,
with associated changes in the location of the major ice divide in
Keewatin, which migrated several hundred kilometers east towards
Hudson Bay (Dyke and Prest, 1987; Margold et al., 2018).

There is also clear evidence for an overall acceleration in the rate of
retreat and thinning of the ice sheet in the southeastern sector. This has
been characterized as a two-phase pattern of deglaciation (Barth et al.,
2019), with steady retreat starting ~20 ka and then increasing around
14.5 ka, coincident with the B-A warming. A clear example of this is
seen in an extensive suite of 21 3°Cl ages from boulder and bedrock
samples along vertical transects spanning ~1000 m of relief in the
Adirondack Mountains of the northeastern USA (Barth et al., 2019).
These data suggest gradual ice sheet thinning of 200 m initiated around
20 ka, followed by a rapid surface lowering of 1000 m, coincident with
the onset of the B-A warming (Barth et al., 2019). Similarly high rates of
thinning are also recorded on Mt. Mansfield, Vermont’s highest peak,
although they appear to have initiated around 13.9 + 0.6 ka, which
slightly post-dates the abrupt onset of the B-A (Corbett et al., 2019).

Despite an acceleration in the overall rate of recession, there ap-
pears to have been minimal recession of the LIS along its northern
margin (Dyke, 2004). Also, there is evidence for readvances/oscilla-
tions of some of the lobes in the vicinity of the Great Lakes (Dyke,
2004), perhaps related to internal ‘surge’ dynamics and short-lived ice
stream activity, rather than any external climatic forcing (Clayton et al.,
1985; Patterson, 1997; Cutler et al., 2001; Margold et al., 2015, 2018;
Stokes et al., 2016). There is also some evidence of climatically induced
readvances of parts of the LIS during the B-A. For example, recession of
the ice margin in northern New Hampshire was interrupted by the
Littleton-Bethlehem readvance and deposition of the extensive White
Mountain moraine system (Thompson et al., 2017). Based on a suite of
approaches (glacial stratigraphy and sedimentology, radiocarbon
dating, varve chronology, and cosmogenic-nuclide exposure dating),
Thompson et al. (2017) constrained the age of this readvance to ~14.0-
13.8 ka, coincident with Older Dryas cooling.

6.3. Alaska

Glaciers in the Brooks Range were smaller than today by 15 ka in
some valleys and ~14 ka in others (Badding et al., 2013; Pendleton
et al., 2015), suggesting widespread glacier retreat around the time of
the B-A onset. In southeast Alaska, there was widespread glacier col-
lapse throughout fjords and sounds during this period (Baichtal and
Carlson, 2010; Carlson and Baichtal, 2015; J. Baichtal, unpublished
data). Whether this recession was related to an abrupt increase in
temperature or to a steady temperature increase during this broader
time period is unknown. However, rising lake levels and decreasing
aridity at ~15 ka (Abbott et al., 2000; Finkenbinder et al., 2014;
Dorfman et al., 2015) suggest that there was a major climate shift in
Alaska at this time.

6.4. Cordilleran Ice Sheet and North Cascades
The B-A interstadial began with the rapid disintegration of the CIS

and deglaciation in the North Cascades from 14.5 ka to 13.5 ka (Clague,
2017; Menounos et al., 2017; Riedel, 2017). Recent glacio-isostatic
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adjustment models supported by data calibration from records of sea
level, paleo-lake shorelines, and present-day geodetic measurements
confirm more than 500 m of thinning of the CIS between 14.5 ka and
14.0 ka (Peltier et al., 2015; Lambeck et al., 2017). The pattern of CIS
deglaciation was complex due to the influences of mountain topo-
graphy, marine waters and regional climate variability. Early degla-
ciation was marked by rapid eastward frontal retreat across the British
Columbia continental shelf and northward retreat up Puget Sound.
Rapid down-wasting exposed high-elevation hydrologic divides and led
to the isolation of large ice masses in mountain valleys (Riedel, 2017).
Lakeman et al. (2008) presented evidence that the CIS in north-central
British Columbia thinned and in some areas transformed into a labyr-
inth of dead or dying ice tongues in valleys. The presence of ice-mar-
ginal landforms in most North Cascade valleys is likely related to
temporary stillstands of the wasting remnants of the CIS, but the ages of
most of these landforms are unknown (Riedel, 2017).

Ice sheet deglaciation temporarily rearranged regional drainage
patterns. Frontal retreat of ice back to the north from hydrologic divides
led to the formation of proglacial lakes in southern British Columbia
and northern Washington (Fulton, 1967; Riedel, 2007). The lakes
generally drained to the south, and several major valleys carried Late
Glacial outburst floods that crossed low hydrologic divides, connecting
rivers and fish migration pathways that later became isolated. The
Sumas advances of the CIS diverted Chilliwack and Nooksack rivers to
the south into lower Skagit valley (Clague et al., 1997). Fish genetics
and geomorphic evidence, including perched deltas and boulder gravel
deposits, indicate that the lower Fraser River may have been diverted
through Skagit valley at this time.

CIS deglaciation during the B-A was interrupted by minor advances
of the CIS, and some alpine glaciers also advanced. The Sumas I ad-
vance of the CIS across Fraser Lowland occurred between 13.6 ka and
13.3 ka (Clague et al., 1997; Kovanen and Easterbrook, 2002). Top-
down deglaciation of the ice sheet from mountain divides led to ex-
posure of valley heads and cirques before adjacent valley floors. This set
the stage for the formation of new cirque and valley moraines from
Yukon Territory to the North Cascades during the B-A (Clague, 2017;
Riedel, 2017). Menounos et al. (2017) report 76 10Be surface exposure
ages on bedrock and boulders associated with lateral and end moraines
at 26 locations in high mountains of British Columbia and Yukon Ter-
ritory. At some of these sites, they also obtained radiocarbon ages from
lakes impounded by moraines or till. Three older moraines have a
combined median age of 13.9 ka, which the authors assigned to the B-A.
A moraine near Rocky Creek at Mount Baker was built before 13.4-13.3
ka based on the age of volcanic ash and charcoal on the moraine sur-
face. The Hyak I and Rat Creek I moraines have 3°Cl surface exposure
ages of 14.6-12.8 ka, but uncertainty in the 3°Cl surface exposure ages
precludes a definitive correlation with this event (Weaver et al., 2003).

There is sparse geological and paleoecological data on climate
during the B-A interval from North Cascades and CIS region. In the
North Cascades, the tentatively dated Rat Creek and Hyak alpine glacial
moraines had ELAs ~500-700 m below those of modern glaciers or
about 200 m above the GLGM advances (Porter et al., 1983). The lower
ELAs were caused, in part, by mean July temperatures about 4-6°C
below modern values (Heusser, 1977; Kutzbach, 1987; Liu et al., 2009).
Rapid loss of the CIS was driven by a positive temperature anomaly of
1-2°C early in the B-A, while a regional increase in mean annual pre-
cipitation of 250 mm and brief cold periods with temperature reduc-
tions of 1.5 °C caused the small glacier advances later in the B-A (Liu
et al., 2009).

6.5. Rocky Mountain/Yellowstone region

Although glaciers in some southwestern valleys continued to ad-
vance after 16 ka due to their exposure to greater orographic pre-
cipitation, the Yellowstone ice cap experienced intense deglaciation
from 15 ka to 14 ka in response to a warming climate (Licciardi and
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Pierce, 2018; Pierce et al., 2018). Glaciers in the Wind River Range
retreated behind their HS-1 moraines at this time, possibly as far as
cirque headwalls (Dahms et al., 2018; Marcott et al., 2019) before they
began to readvance during the YD (see below). Deglaciation occurred in
all ranges in the Colorado Rocky Mountains after about 16 ka, and by
13 ka most glaciers had disappeared (Laabs et al., 2009; Young et al.,
2011; Shakun et al., 2015a; Leonard et al., 2017a, 2017b).

6.6. Sierra Nevada

Glaciers in the Sierra Nevada retreated to cirque headwalls by about
15.5 ka, well before the start of the B-A (Phillips, 2016, 2017). This
relatively early disappearance is attributable to the southerly latitude
and summer-warm, high-insolation Mediterranean climate of the Sierra
Nevada. Following the B-A transition, glaciers reappeared for a very
short interval prior to the Holocene. This event, named the ‘Recess Peak
advance’, resulted from an approximate 150 m decrease in the ELA, in
comparison to a 1200 m decrease during the GLGM maximum advance
(Clark and Gillespie, 1997). Unfortunately, the chronological control
for the time of this advance is imprecise. Three radiocarbon ages from
bulk organic matter in lake cores from two different lake basins that
overlie Recess Peak till fall between 14 ka and 13 ka, suggesting cor-
relation with both the Inter-Allersd Cold Period and the ACR
(Bowerman and Clark, 2011). However, cosmogenic ages (both '°Be
and %6Cl), although somewhat scattered and imprecise, tend to cluster
in the 12.7-11.3 ka range, which would be correlative with the Younger
Dryas. More recently, Marcott et al. (2019) averaged six new '°Be ages
to obtain a date of 12.4 + 0.8 ka for the Recess Peak advance, which is
consistent with the previous cosmogenic ages but does not definitively
establish whether it was a YD or ACR event. Most indirect regional
indicators of cooling also fall within the Younger Dryas age range.
Phillips et al. (2016) performed an in-depth study of this issue, but was
unable to arrive at any definitive conclusion. In summary, there is no
unequivocal evidence for any glacier presence in the Sierra Nevada
during the B-A. It is possible that there was a brief minor advance to-
ward the end of the B-A, but the dating of this event has yet to establish
this with any certainty.

6.7. Mexico and Central America

Data from central Mexico, and to some extent Costa Rica, indicate
that glaciers receded during the B-A, consistent with warming in the
American tropics (Vézquez-Selem and Lachniet, 2017). In central
Mexico, slow initial deglaciation from 15 ka to 14 ka was accompanied
by the formation of small recessional moraines close to those of the
maximum advance (Vazquez-Selem and Lachniet, 2017). Subsequently,
glacier recession accelerated, as evidenced by exposure ages on gla-
cially abraded surfaces from 14 to 13 ka. The ELA increased by at least
200 m during that period (Vazquez-Selem and Lachniet, 2017). Ac-
cording to Cunningham et al. (2019), Cerro Chirrip6 , in Costa Rica,
was ice-free by 15.2 ka, before the onset of the B-A. However, also in
Cerro Chirrip6, Potter et al. (2019) proposed periods of glacier retreat
and stillstand from 15 ka to 10 ka.

6.8. Northern Andes

An advance of Ritacuba Negro Glacier in the Sierra Nevada de
Cocuy, Colombia, has been linked to the ACR and an ELA decrease of
about 500 m (Jomelli et al., 2014). A model simulation of the last de-
glaciation in Colombia (Liu et al., 2009; He et al., 2013) suggests a
temperature 2.9° = 0.8°C lower than today during the ACR, with a 10%
increase in annual precipitation (Jomelli et al., 2016). Bracketing
radiocarbon ages on laminated proglacial lake sediments indicate that
glaciers retreated in the central Mérida Andes of Venezuela under
warmer and wetter conditions at the start of the Bglling (14.6 ka) (Rull
et al., 2010). Glaciers then briefly advanced under colder conditions
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from 14.1 ka to 13.9 ka), followed by warm and dry conditions during
the Allerad (13.9-12.9 ka) (Stansell et al., 2010).

6.9. Peru and Bolivia

There is evidence for glacier advance at many sites in Peru and
Bolivia during the ACR (Jomelli et al., 2014). Mean surface exposure
ages on moraines built during this advance are 14.4-12.7 ka; at some
sites there is an apparent bimodal distribution of ages (Jomelli et al.,
2014). A glacier advance at Nevado Huaguruncho in the Eastern Cor-
dillera of the Peruvian Andes has been dated to 14.1 + 0.4 ka, based on
both exposure ages on moraines and radiocarbon ages on lake sedi-
ments, and was followed by retreat by 13.7 = 0.4 ka (Stansell et al.,
2015). Two sets of moraine ridges in valleys within the Cordillera
Huayhuash date to the ACR (Hall et al., 2009). However, moraine ages
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from the Queshque valley in the nearby Cordillera Blanca are at the end
of the ACR (Stansell et al., 2017). In Bolivia, the two moraines from
Wara Wara and Tres Lagunas (Zech et al., 2009, 2010) may have been
constructed during the ACR, but could be older (Jomelli et al., 2014). A
moraine of Telata Glacier in Zongo Valley formed during either the ACR
or YD (Jomelli et al., 2014). The ACR advance exceeded all subsequent
Holocene advances, with an ELA estimated to be 450-550 m below its
current level based on glaciological modeling (Jomelli et al., 2014,
2016, 2017). Some glacial valleys contain at least two sets of moraines
attributed to the ACR (Jomelli et al., 2014), suggesting multiple ad-
vances related to possible centennial-scale climate fluctuations during
this period. However, such patterns must be better documented in other
mountain ranges to establish a robust climate interpretation (Figs. 21
and 22).

Paleoclimate records suggest that the central tropical Andes were

Atlantic
Ocean

Pacific Ocean

P
¥Nevado
Wiwrrerajo

Fig. 21. ACR moraine in Gueshgue valley in the Cordillera Blanca, Peru (dated by Stansell et al., 2017). Photo by Joseph Licciardi.
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Fig. 22. ACR moraine at Nevado Huaguruncho in the Eastern Cordillera of Peru (dated by Stansell et al., 2015). Photo by Joseph Licciardi.

cold during the ACR (Jomelli et al., 2014), although some contradictory
evidence exists. Moreover, fluvial sediment records suggest that
northern Peru was wet at the start of the ACR but subsequently became
drier (Mollier-Vogel et al., 2013); and speleothem records from Brazil
suggest that the ACR was a period of drier monsoon conditions (Novello
et al., 2017). Farther south on the Altiplano, lake sediment records also
indicate that the ACR was likely a drier interval (Sylvestre et al., 1999;
Baker et al., 2001b), as does the shoreline stratigraphy, indicating that
Lake Tauca had vanished (Placzek et al., 2006; Blard et al., 2011).
Climate forcings responsible for such glacier trends during the ACR
were analyzed using transient simulations with a coupled global cli-
mate model (Jomelli et al., 2014). Results suggest that glacial behavior
in the tropical Andes was mostly driven by temperature changes related
to the AMOC variability superimposed on a deglacial CO, rise. During
the ACR, temperature fluctuations in the tropical Andes are
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significantly correlated with other Southern Hemisphere regions
(Jomelli et al., 2014), in particular with the southern high-latitudes and
the eastern equatorial Pacific. Cold SSTs in the eastern equatorial Pa-
cific were associated with glacier advance.

6.10. Southern Bolivia and Northern Chile

There are no glacial landforms in the Arid Diagonal that have been
dated with sufficient precision to permit an ACR age assignment (Ward
et al., 2015). There are, however, small undated moraines in the upper
headwaters at El Tatio that may date to this period, or perhaps to the
Younger Dryas (Ward et al., 2017). Sites to the south and west, even
those north of the Arid Diagonal, appear to have been fully deglaciated
by this time.
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6.11. Central Andes of Argentina

As of yet, there are no firmly documented glacier advances in the
Argentine Andes after HS-1. In the Sierra de Aconquija, however,
D’Arcy et al. (2019) obtained two ages on a moraine (M3a) that fall
within the B-A/ACR. At Tres Lagunas, there are no moraines younger
than HS-1 (Zech et al., 2009). Possible B-A/AC moraines at other lo-
cations (Sierra de Quilmes, Ansilta Range and Las Lenas) have not yet
been dated (Terrizzano et al., 2017; Zech et al., 2017).

Earth-Science Reviews 203 (2020) 103113

6.12. Patagonia

Many researchers have identified B-A/ACR glacier advances in
central and southern Patagonia (Turner et al., 2005; Ackert et al., 2008;
Kaplan et al., 2008; Moreno et al., 2009; Glasser et al., 2011; Sagredo
etal., 2011, 2018; Strelin et al., 2011; Garcia et al., 2012; Nimick et al.,
2016; Davies et al., 2018; Mendelova et al., 2017). Past research on
glacier fluctuations in northwestern Patagonia did not focus on the last
termination, consequently no evidence of an advance of ACR age has
yet been reported. However, paleoecological records from sectors as far
north as 41°S suggest cooling during this interval (Hajdas et al., 2003).

Atlantic
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Fig. 23. ACR (continuous white line) and Holocene (dashed line) moraines in the Tranquilo Valley, close to Mount San Lorenzo, Patagonia. Photo by Esteban

Salgedo.
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For example, records from northwestern Patagonia (40°-44°S) show
declines in relatively thermophilous trees and increases in the cold-
tolerant/hygrophilous conifer Podocarpus nubigena during ACR time,
suggesting a shift to cold/wet conditions (Jara and Moreno, 2014; Pesce
and Moreno, 2014; Moreno and Videla, 2016; Moreno et al., 2018).
There is a gap in well-dated glacial geologic studies along a ~600 km
length of the Andes between 40°S and 47°S (Fig. 23) covering the time
span of the ACR. The only existing study reports a glacial advance in the
Cisnes valley (44°S) sometime between 16.9 and 12.3 ka (Garcia et al.
2019), however, the chronological constrains are too broad to reach
further conclusions.

Detailed geomorphic studies suggest that glaciers in central and
southwestern Patagonia experienced repeated expansion or marginal
fluctuations during the ACR period (Strelin et al., 2011; Garcia et al.,
2012; Sagredo et al., 2018; Reynhout et al., 2019; Thorndycraft et al.,
2019). Multiple '°Be ages from moraines deposited by glaciers on the
Mt. San Lorenzo massif (47°S) indicate that glaciers there reached their
maximum Late Glacial extents at 13.8 + 0.5 ka (Tranquilo Glacier;
Sagredo et al., 2018), 13.2 + 0.2 ka (Calluqueo Glacier; Davies et al.,
2018), and 13.1 + 0.6 ka (Lacteo and Belgrano glaciers; Mendelova
et al., 2020). An ELA reconstruction based on the data from Tranquilo
valley suggests that temperatures were 1.6-1.8°C lower than at present
at the peak of the ACR (Sagredo et al., 2018). Garcia et al. (2012) report
amean age of 14.2 = 0.6 ka for a sequence of moraines farther south, in
the Torres del Paine area (51°S). The latter findings support the con-
clusions of Moreno et al. (2009), based on radiocarbon-dated ice-
dammed lake records, that the Rio Paine Glacier was near its maximum
extent during the ACR.

6.13. Tierra del Fuego

Relatively little work has been done on ACR ice extent on Tierra del
Fuego. McCulloch et al. (2005a) propose extensive ice in the Cordillera
Darwin as far north as the Isla Dawson adjacent to the Strait of Ma-
gellan during the ACR, but subsequent work has failed to support this
hypothesis. Rather, evidence from bogs located near sea level up-ice of
Isla Dawson suggests that there has not been any major re-expansion of
Cordillera Darwin ice towards the Strait of Magellan since initial de-
glaciation during HS-1 (Hall et al., 2013). Similarly, a radiocarbon age
from a bog on the south side of the mountains in front of Ventisquero
Holanda indicates that the glacier has not reached more than 2 km
beyond its present limit in the past ~15 ka (Hall et al., 2013). In the
only confirmed case of ACR moraines in the region, Menounos et al.
(2013) used 1°Be surface exposure ages of boulders to document an age
of ~14 ka for a cirque moraine in the nearby Fuegian Andes. Other
moraines in the Cordillera Darwin may date to the same period (Hall,
unpublished data), but none has yet been dated adequately.

6.14. Synthesis

Glacier activity in North and Central America was very different
from that in South America during the B-A interstadial (Table 3 and
Fig. 5). This period was generally a time of rapid glacier retreat
throughout North and Central America. Indeed, in many regions, gla-
ciers completely disappeared during the B-A interstadial. Although
evidence has been presented in some areas for minor advances during
the B-A, uncertainties in numeric ages on which the conclusions are
based do not preclude the possibility that the advances happened
during the ACR.

The LIS experienced rapid retreat along much of its margin during
the B-A. Documented local advances may be related more to surge
processes than to climate, although there may be exceptions related to
cooling during the Older Dryas (e.g. Thompson et al., 2017). Glaciers in
Alaska retreated significantly, even beyond the limits they achieved in
the late Holocene. In western Canada and in Washington State, the CIS
retreated rapidly, especially from 14.5 ka to 13.5 ka. During this period
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of general retreat, however, the CIS and many alpine glaciers advanced
between 13.9 ka and 13.3 ka. In the Central and Southern Rocky
Mountains of Wyoming and Colorado, deglaciation had begun by 14.5
ka, and most glaciers had disappeared by 13.5 ka. Although single-
boulder '°Be ages associated with moraines fall between 14.5 ka and
13.3 ka, no evidence of synchronous glacier advances within the B-A
have been reported from these areas. In the Sierra Nevada, glaciers
retreated to cirque headwalls by about 15.5 ka. Some moraines within
Sierra cirques indicate that there were relatively minor advances, but
again, it is not known if they date to the Inter-Allergd Cold Period, the
ACR, or even the YD. In central Mexico, recessional moraines close to
moraines of the maximum advance date to 15-14 ka; after 14 ka, there
was rapid glacier recession. Glaciers in Costa Rica disappeared by 15.2
ka.

Glaciers in the Venezuelan Andes retreated during the B-A, whereas
glaciers in several regions of Central and Southern South America ad-
vanced during this period. In most cases, these advances have been
assigned to the ACR. For example, ACR advances have been proposed in
the Colombian Andes, with temperatures about 3°C lower than today.
Multiple ACR advances have also been reported in the Peruvian and
Bolivian Andes under a cold and relatively dry climate. There are no
conclusive data from northern Chile or the central Andes of Argentina,
but it appears that there was a trend towards deglaciation during the B-
A. Existing data do not resolve whether minor glacier advances that
have been recognized occurred during the ACR or the YD. There were
several ACR-related glacier advances in Patagonia, with temperatures
almost 2°C below current levels. Only limited evidence of the ACR has
been found in Tierra del Fuego.

7. The Impact of the Younger Dryas (YD) (12.9-11.7 ka) and the
Final Stages of Deglaciation

7.1. Younger Dryas concept

The last period we consider in our review extends from the end of
the B-A (12.9 ka) to the beginning of the Holocene (11.7 ka). Again, the
name coined by palynologists — Younger Dryas (YD) — is now widely
used. Although the chronological limits derived from palynology are
controversial, this cold interval has now been defined in Greenland ice
cores (Rasmussen et al., 2014). Undoubtedly, it is the most widely
studied deglacial period. Although climate varied extraordinarily
during this period (Naughton et al., 2019), its effects in the Northern
Hemisphere are clear — the AMOC weakened (Meissner, 2007;
Muschitiello et al., 2019), sea ice expanded, and winter and spring
temperatures dropped drastically (Steffensen et al., 2008; Mangerud
et al., 2016); summers remained relatively warm (Schenk et al., 2018).
Glaciers in Europe advanced (Ivy-Ochs, 2015; Mangerud et al., 2016),
and the Asian monsoon weakened (Wang et al., 2008). Although the
ITCZ migrated southward, precipitation changes in the tropics during
the YD were complex (Partin et al., 2015). Like HS-1, the YD was ac-
companied by warming in Antarctica and an increase in atmospheric
CO, (Broecker et al., 2010; Beeman et al., 2019). The southern con-
tinents appear to have cooled slightly (Renssen et al., 2018), although
glaciers in New Zealand and Patagonia clearly retreated, an apparent
contradiction that has not been resolved (Kaplan et al., 2008, 2011;
Martin et al., 2019; Shulmeister et al., 2019).

The causes of the abrupt YD anomaly continue to be a topic of de-
bate. Changes in deep-water circulation in the Nordic seas, weakening
of the AMOC (Muschitiello et al., 2019), moderate negative radiative
forcing and altered atmospheric circulation (Renssen et al., 2015;
Naughton et al., 2019) likely played a role. Draining of Glacial Lake
Agassiz after intense melting of the Laurentide Ice Sheet during the B-A
would have weakened the AMOC and is supported by geomorphic
evidence of this lake draining into the Gulf of St. Lawrence and the
North Atlantic at the end of the B-A (Leydet et al., 2018). Additionally
or alternatively, Glacial Lake Agassiz may have drained via the
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Mackenzie River into the Arctic Ocean, also weakening the AMOC
(Keigwin et al., 2018). The hypothesis that the cause was external to the
planet has recently attracted renewed interest (Wolbach et al., 2018). In
any case, the YD ended abruptly, with a 7 °C warming of some regions
in the Northern Hemisphere in only 50 years (Dansgaard et al., 1989;
Steffensen et al., 2008).

7.2. Laurentide Ice Sheet

The hemispheric extent of glaciation during the YD is summarized
in Fig. 6, and that of the early Holocene is shown in Fig. 7. The response
of the LIS to the abrupt cooling of the YD is complex and difficult to
generalize, but most records appear to indicate that recession slowed
and that some major moraine systems were built, likely as a result of
marginal readvances (Dyke, 2004). For example, the largest end mor-
aine belt along the northwestern margin of the ice sheet, encompassing
the Bluenose Lake moraine system on the Arctic mainland and its cor-
relative on Victoria Island, is now thought to have formed due to YD
cooling (Dyke and Savelle, 2000; Dyke et al., 2003). Similarly, there are
examples of readvances on Baffin Island, most notably in Cumberland
Sound (Jennings et al., 1996; Andrews et al., 1998). The large Gold
Cove readvance of Labrador ice across the mouth of Hudson Strait has
also been assigned to the late stage of the YD, possibly in response to
the rapid retreat of ice along the Hudson Strait (Miller and Kaufman,
1990; Miller et al., 1999).

It has also been noted that several ice streams switched on during
the YD, perhaps in response to a more positive ice sheet mass balance in
some sectors (Stokes et al., 2016; Margold et al., 2018). Examples are
two large lobes southwest of Hudson Bay (the Hayes and Rainy lobes),
which readvanced towards the end of the YD. However, the precise
trigger is uncertain; climatic forcing and dynamic instabilities related to
meltwater lubrication and/or proglacial lake-level flucutations are
possibities (Margold et al., 2018). Elsewhere, the M’Clintock Channel
ice stream in the Canadian Arctic Archipelago (Clark and Stokes, 2001)
is thought to have been activated during the early part of the YD and
may have generated a large (60,000 km?) ice shelf that occupied Vis-
count Melville Sound (Hodgson, 1994; Dyke, 2004; Stokes et al., 2009).
In contrast, the nearby Amundsen Gulf ice stream appears to have re-
treated rapidly during the early part of the YD, perhaps triggered by
glacier retreat from a bathymetric pinning point into a wider and
deeper channel (Lakeman et al., 2018).

The above examples highlight the difficulty of attempting to relate
ice stream activity to external climate forcing. Overall, it appears that
the LIS receded throughout the YD, but that the pace of recession
slowed and there were notable readvances at the scale of individual
lobes or ice streams. It should also be noted that while several moraine
systems have been robustly linked to YD advances or stillstands, many
others might also be correlative but have not yet been precisely dated
(Dyke, 2004).

Following the YD, the LIS retreated rapidly in response to both in-
creased summer insolation and increasing levels of carbon dioxide
(Carlson et al., 2007, 2008; Marcott et al., 2013). Retreat proceeded
back towards the positions of the major ice dispersal centers in the
Foxe-Baffin sector, Labrador and Keewatin (Dyke and Prest, 1987;
Dyke, 2004; Stokes, 2017). The final retreat of the Labrador Dome has
recently been constrained by Ullman et al. (2016) using °Be surface
exposure dating of a series of end moraines that likely relate to North
Atlantic cooling (Bond et al., 1997; Rasmussen et al., 2006). Following
the last of these cold events at 8.2 ka (Alley et al., 1997; Barber et al.,
1999), Hudson Bay became seasonally ice-free and deglaciation was
completed by 6.7 + 0.4 ka (Ullman et al., 2016).

7.3. Alaska

The existing literature offers limited evidence for glacier readvances
in Alaska during the YD. There may be many moraines that were
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deposited during or at the culmination of the YD, but they have not
been dated. One way to assess the possibility of there being YD mor-
aines in Alaska is to consider whether or not glaciers extended beyond
their present limits during the YD. Of the 14 glaciers throughout Alaska
discussed by Briner et al. (2017), nine had retreated up-valley of their
late Holocene positions prior to the YD. Thus, in some cases, it appears
that glaciers did indeed extend down-valley of modern limits during the
YD. This was the case in Denali National Park and several sites in
southern Alaska. A notable site that provides the best evidence to date
of YD glaciation in the state is at Waskey Mountain in the Ahklun
Mountains. The chronology of the moraines at this locality has been
updated since the work of Briner et al. (2002). Young et al. (2019)
report evidence for an early YD glacier culmination, followed by minor
retreat through the remainder of the interval.

In terms of climate, Kokorowski et al. (2008) conclude that evidence
for YD cooling is mainly restricted to southern Alaska. Kaufman et al.
(2010) argue that the coldest temperatures in southern Alaska were at
the beginning of the YD and that warming occurred subsequently. This
climatic pattern is consistent with the revised glacier chronology of the
Waskey Mountain moraines. Denton et al. (2005) hypothesized that YD
cooling was mostly a wintertime phenomenon and hence may have had
limited effect on glacier mass balance. This hypothesis is supported in
Arctic Alaska with the documentation of extreme winter temperature
depression during the YD (Meyer et al., 2010). Most of the pollen re-
cords summarized by Kokorowski et al. (2008) show no significant
cooling during the YD. In addition to the climate forcing transmitted
from the North Atlantic region, the Bering Land Bridge was flooded
around the time of the YD (England and Furze, 2008), although it may
not have been completely covered by the sea until about 11 ka
(Jakobsson et al., 2017). This flooding event may have led to an in-
crease in precipitation due to more northerly storm tracks (Kaufman
et al.,, 2010), which may have influenced glacier mass balance. Ad-
ditionally, the decreasing influence of LIS-induced atmospheric re-
organization may have affected summer temperature in Beringia during
the Late Pleistocene-Holocene transition. Of course, there may have
been more glacier fluctuations during the YD than is currently envi-
sioned, because they may have occurred under a climate that was si-
milar to, or warmer than, that of the late Holocene (Kurek et al., 2009;
Kaufman et al., 2016), in which case moraines may have been de-
stroyed by Holocene glacier advances.

7.4. Cordilleran Ice Sheet and the North Cascades

Many alpine glaciers and at least two remnant lobes of the CIS ad-
vanced during the YD. In all cases, the advances were much smaller
than those during the LGM and HS-1. At alpine sites, most glaciers
reached only several hundred meters beyond late Holocene maximum
positions attained during the Little Ice Age (Osborn et al., 2012;
Menounos et al., 2017). Other glaciers advanced and came into contact
with stagnant CIS ice at lower elevations (Lakeman et al., 2008). In the
western North Cascades, there are multiple, closely spaced moraines
constructed during the YD (Riedel, 2017). Radiocarbon dating con-
strains the time of an advance on Mount Baker in the North Cascades to
13.0-12.3 ka (K. Scott, written communication; Kovanen and
Easterbrook, 2001). The Hyak II advance in the southernmost North
Cascades near Snoqualmie Pass occurred after 13 ka (Porter, 1976).
Menounos et al. (2017) established '°Be ages on 12 high-elevation
moraines in western Canada with a median age of 11.4 ka. A lobe of the
CIS advanced across central Fraser Lowland one or two times after 12.9
ka (Saunders et al., 1987; Clague et al.,, 1997; Kovanen and
Easterbrook, 2001; Kovanen, 2002), and the final advance of the glacier
in the Squamish River valley in the southern Coast Mountains north of
Vancouver has been dated to about 12.5 ka (Friele and Clague, 2002). It
is not clear how long the CIS persisted in each North Cascade mountain
valley, but the middle reaches of Silver Creek were ice-free by 11.6 ka,
as were many sites in western Canada (Clague, 2017; Riedel, 2017). By
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the beginning of the Holocene or shortly thereafter, ice cover in British
Columbia was no more extensive than it is today. A radiocarbon age
from basal sediments in a pond adjacent to the outermost Holocene
moraine at Tiedemann Glacier in the southern Coast Mountains shows
that ice cover in one of the highest mountain areas in British Columbia
was, at most, only slightly more extensive at 11 ka than today (Clague,
1981; Arsenault et al., 2007). This conclusion is supported by an age of
11.8-11.3 ka on a piece of wood recovered from a placer gold mine near
Quesnel, British Columbia, which is located near the center of the
former CIS (Lowdon and Blake Jr., 1980).

Earth-Science Reviews 203 (2020) 103113

Alpine glacial ELAs associated with YD advances were 200-400 m
below modern values in the North Cascades, but fluctuated 100-200 m
(Riedel, 2007). The colder YD climate is also recorded in changes in
loss-on-ignition carbon in lake bed sediments in the eastern North
Cascades (Riedel, 2017). Changes in pollen zone boundaries led
Heusser (1977) to conclude that YD mean July air temperature was
2-3°C cooler than today. Liu et al. (2009) suggested that annual pre-
cipitation increased by 250 mm, while mean annual air temperature
was 4°C colder compared to the 1960-1990 average, and fluctuated
by = 0.5°C during the YD interval.

98°40'

N .Zl.61

0161
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Fig. 24. Glacial landforms in Alcalican Valley, southwest of Iztaccihuatl in central Mexico. Moraine from the Late Pleistocene-Holocene transition. Elevations are
~3865 m at the bottom of the valley at the end of the moraine and ~5200 m a.s.1. on the mountain summit. Moraines of this group have been *Cl-dated at 13-12 to
~10.5 ka and could be YD in age. Note the three moraine ridges on the right side of the valley. Photo by Lorenzo Vazquez.
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7.5. Rocky Mountain/Yellowstone region

A YD glacier advance or stillstand has been documented in the Lake
Solitude cirque in the Teton Range. Boulders perched on the small
cirque lip date to 12.9 + 0.7 ka (Licciardi and Pierce, 2008). Glaciers in
cirques in the Wind River Range advanced to form moraines or rock
glaciers 50-300 m upvalley of Older Dryas/ HS-1 deposits (Fig. 10).
Ages on these moraines in Stough Basin, Cirque of the Towers and
Titcomb Basin are between 13.3 ka and 11.4 ka (Shakun et al., 2015a;
Dahms et al., 2018; Marcott et al., 2019) and provide clear evidence of
a glacier advance during the YD period. It is uncertain whether or not
these glaciers disappeared prior to re-advancing to their YD positions.

There is clear evidence of a significant glacier advance in the
Colorado Mountains during the YD (Marcott et al., 2019), confirming
previous age assignments (Menounos and Reasoner, 1997; Benson
et al., 2007). Pollen studies (Jiménez-Moreno et al., 2011; Briles et al.,
2012) also indicate Younger Dryas cooling in the Colorado Rocky
Mountains, as does a study of lacustrine sediment (Yuan et al., 2013) in
the San Luis Valley of southern Colorado (Leonard et al., 2017a).

7.6. Sierra Nevada

The only known glacier advance between the retreat of the Tioga 4
glaciers at ~15.5 ka and the late Holocene Matthes (‘Little Ice Age’)
advance in the Sierra Nevada is the Recess Peak advance (Bowerman
and Clark, 2011). Both cosmogenic surface exposure ages and in-
dependent regional climate records favor a YD age for this minor ad-
vance. However, limiting radiocarbon ages on bulk organic matter just
above the Recess Peak till in lacustrine cores are between 14 ka and 13
ka (Phillips, 2017), suggesting that the advance may be older than the
YD. The weight of the evidence appears to still favor the YD age as-
signment, but the replicated direct radiocarbon measurements are dif-
ficult to dismiss. Confirmation of a YD age would support the model
that the YD cooling had a detectable, although not major, impact on the
deglacial climate of the west coast of North America. Confirmation of a
slightly older age would suggest that there was a brief, but significant
episode of cooling there late during the B-A. In either case, the climate
signal is small compared to that of the GLGM. The linked glacial/la-
custrine modeling of Plummer (2002) yields a match to Recess Peak
glacier extent and lake surface area in the paleo-Owens River wa-
tershed, with a temperature reduction of 1°C and 140% of modern
precipitation. This local combination of glacial and closed-basin la-
custrine records offers an unusual opportunity to assess the paleocli-
matic drivers of Recess Peak event, but the significance of the event
cannot be understood until the chronology is secure. Clearly, additional
radiocarbon and high-precision cosmogenic dating of the Recess Peak
deposits is a priority.

7.7. Mexico and Central America

Glaciers constructed a distinctive group of closely spaced end
moraines in the mountains of central Mexico at 3800-3900 m asl from
13-12 ka to ~10.5 ka (Vazquez-Selem and Lachniet, 2017). ELAs were
4100-4250 m asl, which is 650-800 m below the modern ELA, sug-
gesting temperatures ~4-5°C below modern values. Considering that
other proxies generally show relatively dry conditions (Lachniet et al.,
2013), the relatively low ELAs were likely controlled by temperature.

The terminal Pleistocene moraines of central Mexico provide clear
evidence for Younger Dryas glaciation in the northern tropics. The
moraines are closely spaced and relatively small (in general < 6 m high
near their front), but are well preserved in most mountain valleys at
elevations of 3800-3900 m asl. They suggest that glaciers remained
near 3800-3900 m asl for 1000-2000 years at the close of the
Pleistocene, forming several small ridges only tens of meters apart from
one another (Vazquez-Selem and Lachniet, 2017). Cosmogenic ages on
glacially abraded surfaces indicate that mountains < 4000 m asl in
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central Mexico were ice-free by 11.5 ka, and mountains < 4200 m asl
became ice-free between 10.5 ka and 10 ka. South-facing valleys were
ice-free even earlier (12 ka) (Vazquez-Selem and Lachniet, 2017).
Glaciers on high peaks (Iztaccihuatl, Nevado de Toluca, La Malinche)
receded, exposing polished bedrock surfaces below 4100 m asl, from
10.5 ka to 9 ka. A brief, but distinctive glacier advance is recorded later,
from ca. 8.5 ka to 7.5 ka, on the highest peaks of central Mexico
(> 4400 m asl) (Vazquez-Selem and Lachniet, 2017) (Fig. 24).

Cosmogenic exposure ages from the summit of Cerro Chirrip6, Costa
Rica, indicate that the mountain was ice-free by 15.2 ka (Cunningham
et al., 2019). However, other ages suggest moraine formation around
YD time (Potter et al., 2019) and complete deglaciation thereafter
(Orvis and Horn, 2000). The mountains of Costa Rica and likely Gua-
temala were ice-free before 9.7 ka (Orvis and Horn, 2000).

7.8. Northern Andes

The evidence of possible YD glacier advances in the northern Andes
is limited and mainly restricted to elevations above 3800 m asl (Angel
et al., 2017). Glacier advances in some valleys in the Venezuelan Andes
seem to be related to cooling during the YD. In the Sierra Nevada,
climate was dry, but temperatures were 2.2-3.8°C colder than today
between 12.9 ka and 11.6 ka (Salgado-Labouriau et al., 1977; Carrillo
et al., 2008; Rull et al., 2010; Stansell et al., 2010). Mahaney et al.
(2008) suggest glaciers advanced in the Humboldt Massif of this
mountain range at 12.4 ka. In the Mucubaji valley, also in this range,
small moraines located at elevations higher than 3800 m asl have
yielded '°Be ages of 12.22 + 0.60 ka and 12.42 + 1.05 ka (modified
ages from Angel, 2016) and may be related to the YD. Glacier advances
have been linked to the YD in the Sierra Nevada del Cocuy, Colombia,
based on '°Be dating (Jomelli et al., 2014), and on the Bogota Plain
based on ages on lacustrine sediments behind the moraines (Helmens,
1988). There are also moraines that might date to the YD in the
Ecuadorian Andes. For example, in the Chimborazo-Carihuairazo
Massif, two moraine complexes have been radiocarbon-dated to 13.4-
12.7 cal ka BP (Clapperton and McEwan, 1985).

7.9. Peru and Bolivia

The weight of evidence suggests that glaciers were generally in re-
treat during the YD in Peru and Bolivia. In the Cordillera Oriental of
northern Peru, lake sediment records show some evidence of readvance
and reoccupation of higher cirques by glaciers, but no moraines have
been dated (Rodbell, 1993). Similar evidence from Vilcabamba in
southern Peru suggests glaciers advanced at the beginning of the YD,
but then retreated (Licciardi et al., 2009). Mercer and Palacios (1977)
present evidence that glaciers advanced near Quelccaya near the be-
ginning and end of the YD. Similarly, Rodbell and Seltzer et al. (2000)
and Kelly et al. (2012) provide radiocarbon-based evidence that sites in
the Cordillera Blanca and the Quelccaya Ice Cap advanced either just
prior to or at the start of the YD, followed by retreat. A cirque lake in
Bolivia (16°S, headwall 5650 m asl) formed before 12.7 ka, suggesting
that ice had retreated by that time (Abbott et al., 1997). According to
Bromley et al. (2011), the ice cap on the Coropuna volcano experienced
a strong advance at ~13 ka. Similar glacier activity has been reported
at Hualca Hualca volcano (Alcala-Reygosa et al., 2017) and Sajama
(Smith et al.,, 2009) volcanoes. These advances coincide with the
highest level of the Coipasa paleo-lake cycle, confirming the high sen-
sitivity of the glaciers in this region to shifts in humidity (Blard et al.,
2009; Placzek et al., 2013) (Fig. 17).

Many glaciers advanced or experienced stillstands in the Central
Andes during the early Holocene. The mean age of all Holocene mor-
aine boulders is 11.0 + 0.4 ka (Mark et al., 2017). In the Cordillera
Huayhuash, °Be samples from moraine boulders date from 11.4 ka to
10.5 ka (Hall et al., 2009). Early Holocene (11.6-10.5 ka) moraines are
also present on Nevado Huaguruncho (Stansell et al., 2015), and a
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moraine in the Cordillera Vilcabamba in southern Peru has been dated
to ~10.5 ka (Licciardi et al., 2009). Basal radiocarbon ages from lake

oy ]
. S 6 S ° sediments in the Cordillera Raura suggest ice-free conditions after 9.4
o =1 - p=1}
< T 8= E £ ka (Stansell et al., 2013). At Quelccaya in the Cordillera Vilcanota, peat
Eg oo 0 . .
?, 2R e c: o N overlain by till has been dated to 11.1 ka and 10.9 ka (Mercer and
S = o
g g =% g g S Palacios, 1977). Similarly, the Taptapa moraine on the Junin plain has
g D E 9 GG been radiocarbon-dated to ~10.1 cal ka BP (Wright, 1984). The
8 s CZ)’ =82 ; = Quelccaya Ice Cap reached its present extent byl0 cal ka BP, based on
7] 5] < . . . .
:-;'j ‘2 o X B e T dated peat at its margin (Mercer, 1984). Glaciers in Peru seem not to
o 842 e & .

P 5 g = = 5 5 g have advanced throughout the remainder of the early Holocene. In
. S =a Bolivia, however, '°Be ages suggest several advances during the early
o Holocene period (Jomelli et al., 2011, 2014).

] =27 .8 2
5 8:°
& £2¢ 2 7.10. Southern Bolivia and Northern Chile
2 =538 =
g £ g = 2 As in the case of the ACR, there are no confirmed YD glacial land-
g . . . .. "
g 2 g B *;’ E forms in the Arid Diagonal, but the chronology is insufficent to exclude
k5 g £z 2 g 8 minor glacial fluctuations in the high headwaters at this time (Ward
= -~ g% f @ et al., 2017).
& T s § 00 &
3 5y = g =
° o5grEg8 £ 7.11. Central Andes of Argentina
% SEE-PYE 5o
g £S888S5 S5
= 5 .“§ g g jé" g g Published evidence of YD glacier activity exists at only two sites in
& fn<8888 25 the central Andes of Argentina. In the Nevado de Chaii, glaciers re-

treated after HS-1, followed by an advance during the YD (Martini
et al., 2017a). Four °Be ages from lateral and frontal moraines in the
Chani Chico valley average 12.1 + 0.6 ka (Fig. 19) (Martini et al.,
2017a). The ELA during the YD advance was at ~5023 m asl, which is
315 m above the GLGM ELA (Martini et al., 2017a). Moraines assigned
to the YD have been found in two valleys in the Sierra de Aconquija
(D’Arcy et al., 2019). According to D’Arcy et al. (2019), one moraine
(M3a) was deposited at 12.5 ka and a second (M3b) at 12.3 ka. YD
glacier advances coincided with a period of higher-than-present pre-
cipitation at paleo-lake Coipasa on the Altiplano (Blard et al., 2011;
Placzek et al., 2013). No general early Holocene glacier activity has
been reported for the region, although two moraine boulders from
Sierra de Aconquija yielded 1°Be ages of 8.5 ka and 7.9 ka (D’Arcy et al.,
2019). In northwestern Argentina, the presence of relict rock glaciers in

the YD. This general trend was interrupted by — most glaciers approached their present-day

stillstands or minor readvances that deposited

underwent net recession and thinning during
small moraines south of 47°S

between the YD and the ACR; possible YD
moraines in recessed positions at a few

locations.
A glacier in the Fuegian Andes had reached

positions comparable to the Little Ice Age by
12.5-11.2 ka. Probably glaciers were in

extent during the ACR, Patagonian glaciers
recession throughout Tierra del Fuego.

Evidence of local advances during YD
After reaching their maximum late-glacial

Glacial evolution during YD

g cirques suggests that YD or early Holocene cooling may have activated
2 rock glaciers instead of causing glaciers to re-form (Martini et al., 2013,
2 8 2017b).

£s

g 7.12. Patagonia

g5 g

< E 2 After reaching their maximum Late Glacial extents during the ACR,
S5 <

Patagonian glaciers receded during the YD period. In some regions (47°-
52°S), this general trend was interrupted by stillstands or minor read-
vances that deposited small moraines upvalley from the much larger
ACR moraines (Moreno et al., 2009; Sagredo et al., 2011, 2018; Strelin
et al., 2011; Glasser et al., 2012; Mendelova et al., 2020). Some of these
advances may relate to the end of terminal calving following the
draining of paleo-lakes in the region (Davies et al., 2018; Thorndycraft
et al., 2019). Again, no evidence of glacier advances during the YD has
been reported north of 47°S.

Climate during YD in relation to present
Cooler and wetter conditions. Synchronous
with the expansion of Altiplano lakes

No clear cooling and great variability in

2 Paleo-vegetation records indicate a decline in precipitation during

5 TS) the YD in northwestern Patagonia (Jara and Moreno, 2014; Pesce and

g g Moreno, 2014; Moreno et al., 2018b), warm/wet conditions in central-

g E western sectors (44°-48°S) (Villa-Martinez et al., 2012; Henriquez et al.,

& z 2017), and increased precipitation in southwestern sectors (48°-54°S)

_ (Moreno et al., 2012; Moreno et al., 2018a). A widespread warm/dry

§ = R interval is evident between 11 ka and 8 ka (Moreno et al., 2010). Al-

g 8 g though, most studies suggest that Patagonian glaciers retreated through

S £E s o the early Holocene, approaching their present-day configurations

< | 5 TE %" §° v (Strelin et al., 2011; Kaplan et al., 2016), recent finding by Reynhout

% E" 5 § E et al. (2019) at Torre glacier (49°S) show robust evidence of early re-
& newed glacial activity during the early Holocene.
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7.13. Tierra del Fuego

To our knowledge, there are no published data on glacier behavior
during the Northern Hemisphere YD or at the start of the Holocene in
the Cordillera Darwin. Glaciers are assumed to be restricted to the inner
fjords. In the adjacent Fuegian Andes, an excavation just upvalley of an
ACR moraine yielded a calibrated radiocarbon age on peat of ~12.2 ka,
indicating that the glacier had receded by that time (Menounos et al.,
2013), possibly during the YD. In the same cirque, the presence of the
Hudson tephra (7.96-7.34 ka) within ~100 m of Little Ice Age moraines
suggests the glacier had receded to the Little Ice Age limit by the early
Holocene.

7.14. Synthesis

Information on glacier activity in the Americas during the YD is
limited, but has been improving in recent years (Table 4 and Figs. 6 and
7).

The LIS continued to thin and retreat throughout the YD, although
at a lower rate than earlier. Some major moraine systems were built
during YD stillstands or re-advances, but it is uncertain if they are a
consequence of climate forcing or glacier dynamics related to internally
driven instabilities. Evidence for YD advances is sparse in Alaska, and it
seems that glacier retreat dominated there. In southern Alaska, how-
ever, temperatures decreased during the YD. It is possible that glaciers
advanced during this period, but if so, the evidence was destroyed by
late Holocene advances. There is evidence of YD glacier advances at the
southwestern margin of the CIS and in the North Cascades, where a
significant reduction in temperature and an increase in precipitation
have been detected. In the Wyoming and Colorado Rocky Mountains,
moraines in several cirque basins, which once were thought to be mid-
Holocene ('Neoglacial') age, are now attributed to the YD. In the Sierra
Nevada a minor advance may be attributed to the YD, although the
dating is problematic. Many other small moraine complexes in the
western mountains of the U.S. have yet to be dated.

One of the few regions with obvious YD moraines is central Mexico,
where reconstructed ELAs suggest temperatures were ~4-5°C below
modern values in an environment that was drier than today. The evi-
dence for YD glaciation in the mountains of Costa Rica is inconclusive,
but in the Northern Andes at elevations above 3800 m asl, some glaciers
advanced during the YD due to a decrease in temperatures of 2.2-3.8°C
below present values under a dry climate.

Glaciers continued to retreat in Peru and Bolivia during the YD,
except on the Altiplano where the YD coincided with the highest level
of the Coipasa paleo-lake cycle and with advances of glaciers in nu-
merous mountain ranges and on high volcanoes. It is questionable
whether some late advances in northern Chile occurred during the ACR
or the YD, but most of the Arid Diagonal was already ice-free in the YD.
Some evidence for YD advances has been found in the central Andes of
Argentina, but in Patagonia glacier retreat continued throughout the
YD and was interrupted only by stillstands or minor readvances that
deposited small moraines. Glacier retreat also dominated during the YD
on Tierra del Fuego, where there is no evidence for advances during this
period.

Deglaciation accelerated after the YD in nearly all of North, Central
and South America, and most small glaciers reached their current size
or disappeared during the early Holocene. In the area of the LIS, de-
glaciation occurred rapidly following the YD and was largely complete
by 7 ka. In Alaska, glaciers reached sizes similar to today in the early
Holocene. The CIS had disappeared by the beginning of the Holocene.
Most glaciers in the Yellowstone region and the Colorado Rocky
Mountains disappeared before the Holocene, and in the Sierra Nevada
glaciers were about their current size at that time. In central Mexico,
glaciers probably reached their current size or disappeared by the be-
ginning of the Holocene, although a minor advance, probably related to
the 8.2 ka event, is recorded on the highest volcanoes. Many glaciers
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advanced or experienced stillstands in the Central Andes under a wetter
climate during the early Holocene, although these glaciers apparently
rapidly retreated a short time thereafter. In Patagonia and Tierra del
Fuego, glaciers retreated during the early Holocene and most glaciers
approached their present size at that time.

8. Discussion
8.1. The climatic meaning of the Last Glacial Termination

Before comparing glacier behavior in the different regions of the
Americas, we first summarize the state of knowledge of global climate
evolution during the Last Glacial Termination and the mechanisms that
caused it. An immediate problem in attempting such a summary is that
it is difficult to even define the start and end of this period. It en-
compasses a set of events that do not begin or end at the same time
around the world. In addition, deglaciation may be caused, not only by
changes in orbital forcing that regulate the amount of insolation that
Earth receives (Broecker and van Donk, 1970), but also by internal
forcing mechanisms and feedbacks, including changes in atmospheric
circulation and composition, especially in CO, and CH4 (Sigman and
Boyle, 2000; Monnin et al., 2001; Sigman et al., 2010; Shakun et al.,
2012; Deaney et al., 2017), changes in ocean circulation, the compo-
sition of the oceans and sea ice extent (Bereiter et al., 2018), and the
interplay between the atmosphere and oceans (Schmittner and
Galbraith, 2008; Fogwill et al., 2017). Finally, the Last Glacial Termi-
nation is difficult to define because the two hemispheres experience
opposing external forcing and potentially opposing internal forcing
mechanisms that might induce a climate compensation effect between
the hemispheres termed the “bipolar seesaw” (Broecker and Denton,
1990).

Broadly speaking, glacial terminations initiate when the ice sheets
of the Northern Hemisphere are at their maximum extent and with
global sea level at its lowest (Birchfield and Broecker, 1990; Imbrie
et al., 1993; Raymo, 1997; Paillard, 1998). Additionally, global degla-
ciation during each termination operates over approximately the same
length of time during each glacial cycle and is characterised by short-
lived fluctuations of rapid glacier retreat and occasional re-advances
(Lea et al., 2003). Given these observations, it is important to determine
the mechanisms responsible for the climatic and glacial changes that
accompany deglaciations. To that end, several hypotheses have been
proposed that are mainly based on the temperatures of the oceans
(Voelker, 2002) and the composition of the atmosphere (Severinghaus
and Brook, 1999; Stolper et al., 2016).

Any attempt to closely examine the Last Glacial Termination must
account for changes in ocean temperature throughout this period. These
temperature changes are simultaneous in the two hemispheres, but can
shift in opposite directions, for example in the Atlantic Ocean. They are
determined by the greater or lesser intensity of the AMOC (see synth-
eses in Barker et al., 2009, 2010). Even though these changes occur
throughout deglaciation, the amount of CO, in the atmosphere tends to
increase more or less continuously. A possible explanation for this ap-
parent enigma is that the oceans in one hemisphere may cool while
those in the other hemisphere warm and emit more CO,, redistributing
heat across the planet (Barker et al., 2009).

Building on previous work (Cheng et al., 2009), Denton et al. (2010)
propose that a concatenation of processes, with multiple positive
feedbacks, drive deglaciation. They argue that deglaciation is initiated
by coincident “excessive” growth of Northern Hemisphere ice sheets
and increasing boreal summer insolation due to orbital forcing. The
large volume of ice on northern continents results in maximum isostatic
depression and an increase in the extent of the ice sheets that are
marine-based. Even a small increase in insolation could, under these
conditions, enlarge ablation zones and initiate the collapse of Northern
Hemisphere ice sheets. Marine-based ice sheets can also be more vul-
nerable to collapse due to positive feedbacks associated with sea-level
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rise at the grounding line. Outbursts of meltwater and icebergs from
these ice sheets cool the North Atlantic Ocean and weaken the AMOC,
leading to an expansion of winter sea ice and very cold winters on the
adjacent continents (Denton et al., 2010). Under these conditions, the
northern polar front expands, driving the ITCZ, the southern trade
winds, and the southern westerlies to the south (Denton et al., 2010).
The Asian monsoon weakens, while the cooling over the North Atlantic
intensifies the South American monsoon (Novello et al., 2017) and the
southern westerlies. The result is an increase in upwelling in the
southern oceans, accompanied by enhanced ocean ventilation and a rise
in atmospheric CO,. During deglaciation, the Southern Hemisphere
warms first, followed by warming over the rest of the planet (Broecker,
1998). Southward migration of the southern westerlies also contributes
to a temperature rise in the southern oceans, which transfer heat to the
south (Denton et al., 2010). The intensive cooling in the Northern
Hemisphere ends due to a reduction in meltwater input, northward
retreat of sea ice, and renewed warming of the northern oceans, which
reestablish the AMOC. Subsequently, the ITCZ returns northward and
the Asian monsoon intensifies. The northward migration of the
southern westerlies and the intensification of the AMOC cool the
southern oceans, completing a cycle in the recurrent bipolar seesaw
that ultimately tends toward equilibrium (Denton et al., 2010).

The hypothesis for climate evolution during Last Glacial
Termination summarized above can be tested with our dataset on the
behavior of glaciers in the Americas. It is clear that sea level depends on
how water is distributed between the ocean and Northern Hemisphere
ice sheets during glacials and also on the effects of land-based glacier
ice cover on the isostatic balance of the northern continents (Lambeck
et al., 2014). The hypothesis that deglaciation begins when northern ice
sheets are extremely large is still supported (Abe-Ouchi et al., 2013;
Deaney et al., 2017). According to Cheng et al. (2016), for example, ice
sheets reach their maximum size after five precession cycles, which may
explain why glacial cycles finished after similar durations of about 115
ka (Paillard, 1998). In addition, it seems that the time needed for ice
sheets to reach this extreme size increased throughout the Pleistocene
(Clark et al., 2006), and successively more insolation energy was re-
quired to start deglaciation. This might explain why each glacial cycle is
longer than its predecessor (Tzedakis et al., 2017). Deglaciation begins
when the excessive size of the northern ice sheets coincides with: (i)
increasing insolation in boreal summer in the Northern Hemisphere,
mainly at 65° N, the average latitude of large northern ice sheets
(Kawamura et al., 2007; Brook and Buizert, 2018); (ii) minimum CO, in
the atmosphere (Shakun et al., 2012); and (iii) maximum sea ice extent
(Gildor et al., 2014). These conditions induce aridity and reduce ve-
getation cover, which in turn increases atmospheric dust, reducing al-
bedo on northern ice sheets (Ellis and Palmer, 2016). Better knowledge
of the activity of glaciers throughout the Americas may confirm the
hypothesis that is central to these models, namely that deglaciation
begins in the North and is transmitted to the South.

New information from ocean and polar ice cores reinforces the idea
of climate compensation between the two hemispheres (the bipolar
seesaw) during the Last Glacial Termination. Intensive sea-level rise
occurs within the first 2 kyr of deglaciation, inducing retreat of marine-
based ice sheets, and acts as a positive feedback for deglaciation (Grant
etal., 2014). Fogwill et al. (2017) argue that, once deglaciation starts, it
is driven by global oceanic and atmospheric teleconnections. New data
support the idea that meltwater cooling of the Northern Hemisphere
reduced the AMOC strength (Deaney et al., 2017; Muschitiello et al.,
2019) and pushed the northern westerlies southward in Asia (Chen
et al.,, 2019), Europe (Naughton et al., 2019), and North America
(Hudson et al., 2019). The Asian summer monsoon weakened during
these cold periods in the Northern Hemisphere (Cheng et al., 2016;
Chen et al.,, 2019), and the Indian summer monsoon transferred
Southern Hemisphere heat northward, promoting subsequent Northern
Hemisphere deglaciation (Nilsson-Kerr et al., 2019).

New data have also highlighted the importance of CO, storage in
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the dense deep waters of the Southern Hemisphere during glacials
(Fogwill et al., 2017; Clementi and Sikes, 2019). Ventilation of these
waters during deglaciation emits a large amount of CO, into the at-
mosphere and significantly warms the planet (Stephens and Keeling,
2000; Anderson et al., 2009; Skinner et al., 2010; Brook and Buizert,
2018; Clementi and Sikes, 2019), favoring deglaciation (Lee et al.,
2011; Shakun et al., 2012). This increase in CO, overrides the cooling
effect from orbital variations in the Southern Hemisphere (He et al.,
2013).

Recent high-resolution data from ice cores in Antarctica and
Greenland have helped verify the opposite temperature trends in the
two polar areas during deglaciation, at least on a large scale. Moreover,
these data confirm that the rise in CO5 was synchronous with the in-
crease in Antarctic temperatures (Ahn et al.,, 2012; Beeman et al.,
2019). Antarctic temperature seems to be more closely linked to
changes in tropical ocean currents, whereas Greenland is less affected
by this phenomenon (Wolff et al., 2009; Landais et al., 2015). However,
the intimate relationship between AMOC intensity and atmospheric
CO, concentrations has been clearly demonstrated (Deaney et al.,
2017), and deglaciation largely represents a period of imbalance be-
tween these two parameters. Therefore, when the AMOC stabilizes,
atmospheric CO, concentrations stabilize and the interglacial period
begins (Deaney et al., 2017). That said, some exceptions have been
detected on a centennial scale (Bohm et al., 2015). A sudden surge in
the AMOC may cause a large release of CO, into the atmosphere, al-
though only for a few centuries (Chen et al., 2015). New studies pro-
pose that mean ocean temperature and the temperature of Antarctica
are closely related, underlining the importance of the Southern Hemi-
sphere ocean in orchestrating deglaciation (Bereiter et al., 2018), as it is
the main contributor of CO, to the atmosphere (Beeman et al., 2019).
Inverse temperature evolution and the latitudinal migration of atmo-
spheric circulation systems (fronts, ITCZ, trade winds and westerlies)
may have the greatest impact on the planet’s glaciers and ice sheets,
albeit in opposite directions.

Improved knowledge of the changing extent of glaciers throughout
the Americas is necessary to understand how glaciers are affected by
the above-described evolution of the climate system during the Last
Glacial Termination. However, little attention has been focussed on the
differing behavior of glaciers between the hemispheres and how this
might reflect global ocean and atmospheric teleconnections during the
last deglaciation. Is there a glacial bipolar seesaw reflected in the be-
havior of mountain glaciers? In that sense, it is necessary to consider
that mountain glaciers today contribute about one-third of the ice melt
to the oceans (Gardner et al., 2013; Bamber et al., 2018). One of the few
studies that compares the behavior of mountain glaciers in both
hemispheres is that of Shakun et al. (2015a). These authors analyzed
1116 cosmogenic nuclide exposure ages (mostly 1°Be ages) from glacial
landforms located between 50°N and 55°S on different continents, but
mostly from the Americas. Inferred glacier behavior was evaluated
using a variety of climate forcings. Their results demonstrate that gla-
ciers responded synchronously throughout deglaciation, mainly due to
the global increase of CO, in the atmosphere and the subsequent in-
crease in temperature. They note important regional differences related
to other factors, such as insolation in the Northern Hemisphere, a
seesaw response to changes in the AMOC in the Southern Hemisphere,
and changes in precipitation distribution and in tropical ocean currents.

8.2. Glaciers in the Americas during GLGM in a global context

We note the similarity in the times of glacier advances in North and
Central America during the GLGM. Most mountain glaciers reached
their maximum extent before or during the GLGM, although in some
areas (e.g. Teton Range and portions of the Yellowstone Ice Cap), the
maximum may also have encompassed HS-1. However, there were
many local differences within each region. Similarly, the LIS did not
exhibit uniform evolution along all parts of its margin, although it did
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reach its maximum extent during the GLGM. Based on our synthesis, the
LIS began to retreat about 21 ka ago at the same time as the majority of
the North and Central American glaciers, as well as European glaciers.
The Scandinavian Ice Sheet reached its maximum extent in the GLGM
and also started its retreat about 21 ka (Toucanne et al., 2015; Cuzzone
et al., 2016; Hughes et al., 2016a; Hughes et al., 2016b; Stroeven et al.,
2016; Patton et al., 2017). As in the case of the LIS, the margins of the
Scandinavian Ice Sheet retreated at different times; retreat in some
areas was delayed until HS-1. The same timing and behavior has been
reported for the Barents, British-Irish, and Icelandic ice sheets (Hormes
et al., 2013; Pétursson et al., 2015; Hughes et al., 2016a). In all three
cases, the maximum was reached during the GLGM and deglaciation
began about 21-20 ka, although retreat did not begin in some areas
until HS-1. Some sectors of the British-Irish Ice Sheet began their retreat
very early in the GLGM, although for reasons related to the dynamics of
the ice sheet rather than climate (O Cofaigh et al., 2019). In the case of
the Icelandic Ice Sheet, sea-level rise caused it to collapse after 19 ka
(Pétursson et al., 2015). In summary, the Last Glacial Termination
started almost simultaneously in areas covered by the LIS and the
Eurasian ice sheets.

Similarities are also evident between North and Central American
and many European mountain glaciers. The glacial maximum in Europe
extended from 30 ka until the beginning of deglaciation 21-19 ka, for
example in the Alps (Ivy-Ochs, 2015), Apennines (Giraudi, 2015), Trata
Mountains (Makos, 2015; Makos et al., 2018) and the Anatolia pe-
ninsula mountains (Akcar et al., 2017). However, glaciers in some mid-
latitude mountains in Europe achieved their maximum size much ear-
lier, between MIS 5 to MIS 3, for example, glaciers in the Cantabrian
Mountains and central Pyrenees on the Iberian Peninsula (Oliva et al.,
2019) and the High Atlas in North Africa (Hughes et al., 2018). In
contrast, glaciers in the eastern Pyrenees, the Central Range and the
Sierra Nevada on the Iberian Peninsula, which are also located in mid-
latitudes, clearly attained their maximum size during the GLGM (Oliva
et al., 2019). In summary, mountain glaciers in Europe and North
America evolved in a similar way, in spite of the local differences within
each region.

Comparing glacial behavior in South America to glaciers in other
continents at similar latitudes is more difficult. The extra-American
glaciers of the Southern Hemisphere are located in isolated mountains
of Africa and Oceania and, with one exception, have not been well
studied. The exception is the Southern Alps of New Zealand, which are
located at the about the same latitudes as northern Patagonia.

Unlike most of North and Central America, the maximum advance
of the last glacial cycle throughout South America, except perhaps in
Tierra del Fuego and in some mountains of Patagonia, was reached long
before the GLGM, which is between approximately 60 ka and 40 ka. A
similar pattern is also evident in mountains of East Africa (Shanahan
and Zreda, 2000; Mahaney, 2011), New Zealand (Schaefer et al., 2015;
Darvill et al., 2016) and Kerguelen (Jomelli et al., 2018). Outside the
Southern Hemisphere, an early maximum advance during the last gla-
cial cycle has also been proposed in some mountains in Mexico (Heine,
1988), in the central Pyrenees, the Cantabrian Mountains (Oliva et al.,
2019), and in the High Atlas (Hughes et al., 2018). However, these
cases are exceptional and are not located in any latitudinal zone; rather
they are purely regional. Some authors have suggested the idea of an
aborted termination around 65-45 ka in the Southern Hemisphere, after
glaciers had achieved their maximum extents (Schaefer et al., 2015).

Although the GLGM was not the last time that glaciers advanced in
the Southern Hemisphere, it was a period of widespread glacier ex-
pansion under a mainly cold and wet climate. As in the Andes, many
glaciers in the mountains of East Africa (Shanahan and Zreda, 2000;
Mahaney, 2011) and New Zealand (Schaefer et al., 2015; Darvill et al.,
2016; Shulmeister et al., 2019) advanced during the GLGM and left
outer moraine systems. This advance has been attributed to a south-
ward migration of the ITCZ and westerlies in response to strong cooling
in the Northern Hemisphere (Kanner et al., 2012; Schaefer et al., 2015;
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Darvill et al., 2016). Paleoclimate records from central Chile, north-
western Patagonia, and the southeast Pacific, however, imply a north-
ward shift in southwesterly winds during the GLGM (Heusser, 1990;
Villagréan, 1988a, 1988b; Heusser et al., 1999; Lamy et al., 1999;
Moreno et al., 1999; Moreno et al., 2018a).

Deglaciation in the Patagonian Andes began at 17.8 ka, consistent
with Antarctic ice core records (Erb et al., 2018) and New Zealand
glacial chronologies (Schaefer et al., 2015; Darvill et al., 2016; Barrell
et al., 2019; Shulmeister et al., 2019). It occurred two or three millennia
after the inception of deglaciation in the Northern Hemisphere, al-
though researchers have noted that ice recession and moderate
warming took place during the Varas Interstade, between ~24 and ~19
ka (Mercer, 1972, 1976; Lowell et al., 1995; Denton et al., 1999; Hein
et al., 2010; Mendelova et al., 2017).

The GLGM was more than a climatic period; it was the time when
the world’s glaciers achieved their maximum extent after the previous
interglacial. However, ice masses did not all behave in the same way
because their activity was affected by topography, regional changes in
ocean and atmospheric circulation, local climatic conditions and cli-
mate feedbacks (Liakka et al., 2016; Patton et al., 2017; Liakka and
Lofverstrom, 2018; Licciardi and Pierce, 2018). Although many glaciers
reached their maximum extent well before the GLGM, especially in the
Southern Hemisphere, the northern ice sheets grew more-or-less con-
tinuously towards the GLGM. Many glaciers, also in the Northern
Hemisphere, achieved their largest size just before the GLGM. Within
each region, glaciers advanced many times, conditioned by the geo-
graphical constraints arising from their own expansion. When the next
warm orbital cycle began to affect the Northern Hemisphere, around 21
ka, deglaciation started in all areas, although it was somewhat delayed
in the Southern Hemisphere. Again, the duration and intensity of de-
glaciation after the GLGM differed greatly and was regional rather than
latitudinal.

8.3. Glaciers in the Americas during HS-1 in a global context

Records of glacier behavior in the Americas during HS-1 are con-
sistent with records from other continents, albeit with considerable
local variability in each region. HS-1 did not have a strong impact on
the LIS and European ice sheets (Patton et al., 2017). Around 17.8 ka,
however, some of the margins of these ice sheets stabilized or advanced
and moraines were built at their margins. Retreat began again shortly
thereafter, around 17.5 ka, with some local oscillations superimposed
on overall retreat through the rest of HS-1 (Cuzzone et al., 2016;
Hughes et al., 2016a; Peters et al., 2016; Stroeven et al., 2016; Gump
et al., 2017; Patton et al., 2017). Although there may have been an
internal reorganization of flow patterns and ice sheet geometry at this
time, we note that there is little evidence for any major readvance of the
LIS during during HS-1, and retreat likely continued in most regions
including the southern margin (Heath et al., 2018). The European ice
sheets evolved in a similar manner (Toucanne et al., 2015), with de-
glaciation beginning between 21 ka and 19 ka (Patton et al., 2017) and
rapidly leading to huge ice losses. The meltwater contribution to the
North Atlantic, mainly from the LIS, was enough to drastically reduce
the AMOC (Toucanne et al., 2015; Stroeven et al., 2016).

Knowledge of the impacts of HS-1 on mountain glaciers in Europe is
stronger than in North and Central America. Glaciers advanced in the
Alps during HS-1 (Gschnitz stadial), occupying valley bottoms that had
been deglaciated earlier. The main advance was at the beginning of HS-
1, around 17-16 ka, and its moraines are recognized in many valleys
(Ivy-Ochs, 2015). An advance of the same age has been documented in
the Tatra Mountains, (Makos, 2015; Makos et al., 2018). Up to three
readvances have been recognized in the Appenines during HS-1
(Giraudi, 2015), and glaciers advanced on the Anatolian Peninsula near
the end of HS-1 (Sarikaya et al., 2014, 2017). Glacial advances around
17-16 ka are recognized in almost all mountain ranges on the Iberian
Peninsula (Oliva et al., 2019). As in the Alps, glaciers on the Iberian
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Peninsula reoccupied the lower reaches of valleys, approaching the
moraines of the GLGM (Palacios et al., 2017a). This was the case in the
central and eastern Pyrenees, the Central Range and the Sierra Nevada
(Oliva et al., 2019). All of these European advances happened at about
the same time as the HS-1 glacier advances in North and Central
America. In the Rocky Mountains, Mexico and Central America, max-
imum GLGM advances appear to have extended into HS-1, although it is
possible that glaciers readvanced during HS-1, surpassing and erasing
GLGM glacial landforms. The most recent summaries of the glacial
chronology of the California Sierra Nevada (Phillips, 2017), Wyoming’s
Wind River Range (Dahms et al., 2018, 2019; Marcott et al., 2019), the
European Alps (Ivy-Ochs, 2015), and Iberian Sierra Nevada (Palacios
et al., 2016) indicate that the glaciers in these mountain systems be-
haved in similar ways during HS-1.

The marked glacier advances in the tropical Andes during HS-1 have
been attributed to an intensification of the South American monsoon
under a colder climate (Kanner et al., 2012). The monsoon produced a
wet period on the Altiplano and caused glaciers to advance in the
surrounding mountains, in many cases beyond the limits of the GLGM
moraines. Again, it is difficult to compare South American tropical
glaciers to other glaciers at similar latitudes. There is little information
on the glaciers of East Africa; ages bearing on deglaciation have a large
margin of error that precludes assigning events to HS-1 with con-
fidence, although many of the glaciers show evidence of large late-
glacial oscillations (Shanahan and Zreda, 2000; Mahaney, 2011).

It is much easier to compare glacier behavior between temperate
southern latitudes, such as Patagonia and the Southern Alps of New
Zealand and Kerguelen Archipelago. In these mountain ranges, degla-
ciation accelerated during HS-1 (Darvill et al., 2016). The glaciers re-
treated throughout the entire HS-1 period in the Southern Alps (Putnam
et al., 2013; Koffman et al., 2017), Kerguelen (Jomelli et al., 2018) and
the same happened in Patagonia (Mendelova et al., 2017) and Tierra
del Fuego (Hall et al., 2013). Moraines in some valleys of the Southern
Alps dated to 17 ka were built at the end of a prolonged GLGM and
mark the beginning of large-scale deglaciation (Barrell et al., 2019;
Shulmeister et al., 2019).

On both continents, deglaciation began about 21 ka and became
much more widespread after 19-18 ka, resulting in a steady rise in sea
level, cooling of the North Atlantic, and reduction of the AMOC. HS-1
was a short period of stabilization and reduction in ice loss. Strong
cooling occurred in temperate northern latitudes, and mountain gla-
ciers advanced close to the limits reached during the GLGM, in some
cases even surpassing them. This happened in spite of increased aridity,
which was a consequence of the southward migration of the polar front.
The ITCZ also migrated southward, particularly over the tropical
Atlantic, thereby intensifying the South American monsoon and in-
creasing precipitation in tropical latitudes, where glaciers advanced
considerably. In contrast, in the temperate latitudes of the Southern
Hemisphere, HS-1 was a warm period and glaciers began or continued
their rapid retreat under a climate that was opposite that in the tem-
perate latitudes of the Northern Hemisphere.

8.4. Glaciers in the Americas during the B-A and ACR in a global context

We have seen above that the southern and western margins of the
LIS retreated during the B-A, whereas there was minimal retreat along
its northern margin. In the rest of North and Central America, many
glaciers retreated significantly or disappeared altogether by the end of
HS-1 and during the B-A. However, some studies have suggested that
there were short periods of glacier advance in Europe, as in North
America, during this period of general deglaciation. The European ice
sheet retreated from the sea and through central Europe during the B-A
(Cuzzone et al., 2016) and separated into smaller ice sheets centered on
the Scandinavian Peninsula, Svalbard and Novaya Zemlya (Hughes
et al., 2016a; Patton et al., 2017). Along the southern and northwestern
margins of the Scandinavian Peninsula, there are moraine systems that
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mark the end of GS-2.1, and other moraines inboard of them relate to
the cold stage of GI-1d, called the Older Dryas (Mangerud et al., 2016,
2017; Stroeven et al., 2016; Romundset et al., 2017). Moraines were
built at the margin of the British-Irish ice sheet about 14 ka in the Older
Dryas, but that ice sheet had nearly disappeared along the B-A
(Ballantyne et al., 2009; Hughes et al., 2016a; Wilson et al., 2019). The
ice sheet covering Iceland retreated and left important parts of the in-
terior of the island free of ice during the B-A, with a climate similar to
that of today (Pétursson et al., 2015). In summary, we conclude that
European ice-sheets behaved in a similar manner to American glaciers
during the B-A.

Glaciers in the European Alps experienced the same rapid degla-
ciation during the B-A as in North and Central America. After advances
during HS-1, alpine glaciers retreated considerably during the B-A and
had practically disappeared by the end of this period (Ivy-Ochs, 2015).
Older Dryas (Daun stadial) moraines have been identified in many al-
pine valleys, indicating stagnation or an advance of glaciers between
the two interstadials (Ivy-Ochs, 2015). After an advance in the Tatra
Mountains at about 15 ka, glaciers retreated rapidly (Makos, 2015;
Makos et al., 2018). This retreat was interrupted by readvances of
glaciers during the Older Dryas (Marks et al., 2019). Glaciers also ra-
pidly retreated in the eastern Mediterranean during the B-A (Dede
et al., 2017; Sarikaya and Ciner, 2017; Sarikaya et al., 2017). The same
pattern is evident in the Balkans (Styllas et al., 2018), the Apennines
(Giraudi et al., 2015), and the Iberian Peninsula where glaciers dis-
appeared from some mountain systems or retreated into the interior of
cirques (Oliva et al., 2019). Some moraines in these mountains may
have been built in the Older Dryas cold period, but uncertainties in the
cosmogenic ages are sufficiently large that this possibility cannot be
confirmed. Examples are found in the central Pyrenees (Palacios et al.,
2017b).

Conditions were warmer in Venezuela, and glaciers retreated,
during B-A. The B-A warm interstadial is not reflected in Central and
Southern South American glacier behavior. Rather, there is clear evi-
dence from the northern and tropical Andes of advances during the
ACR. These advances occurred under cold and arid conditions caused
mainly by temperature changes related to the strengthening of the
AMOC (Jomelli et al., 2014). Although there is currently no evidence of
these advances in northern Chile and the central Andes of Argentina,
they are clear in Patagonia, where after a retreat of glaciers during HS-
1, there was an advance during the ACR (Strelin et al., 2011; Garcia
et al., 2012). Evidence has been found also of a glacier advance during
the ACR in the Fuegian Andes on Tierra del Fuego (Menounos et al.,
2013), although there is no conclusive evidence of an ACR event in the
adjacent Cordillera Darwin (Hall et al., 2019).

Again, a comparison of the behavior of South American glaciers to
glaciers in other areas of the Southern Hemisphere is almost impossible.
In East Africa, as is the case on other continents, it is very difficult to
place the ages of some moraines within the ACR or YD (Mahaney,
2011). However, in the Southern Alps of New Zealand, at Kerguelen
(Jomelli et al., 2018) as in Patagonia, there is evidence of glacier ad-
vances during the ACR, but with large regional variations, possibly
related to the westerlies (Darvill et al., 2016). In any case, most of the
possible ACR moraines in New Zealand have been dated to 13 ka, at the
boundary between the ACR and the YD (Shulmeister et al., 2019). There
are indications of a decrease in temperature of 2-3°C at that time, at
least in some areas of the Southern Alps (Doughty et al., 2013). In spite
of the limited knowledge of glacier evolution over much of this region,
we conclude that South American glaciers evolved in a similar way to
glaciers at similar latitudes on other continents and opposite to that of
glaciers in the Northern Hemisphere.

Deglaciation of the Northern Hemisphere accelerated under a warm
climate in the lead-up to the interglacial period. Again, we observe
differences in glacial behavior within each region, in both North
America and Europe, but these differences are local and relate to the
geography of ice sheets and mountain glaciers and not to latitudinal
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trends. In the best-studied regions where glacial landforms are well
preserved, the impacts of short cold intervals on glaciers have been
detected, especially in the Older Dryas. However, in most cases, un-
certainties in dating preclude correctly assigning landforms to brief
climatic periods. Thus, it is not yet possible to determine whether any
moraines in the Northern Hemisphere belong to the ACR or the Older
Dryas. Glacier behavior in the Southern Hemisphere is different from
that in North America and on other northern continents. The impact of
cooling during the ACR is clear in some of its regions. In the Southern
Hemisphere, there was no massive, continuous glacier melt, but rather
a tendency towards stagnation or glacier advance. As was the case for
HS-1, the north and the south responded in opposite ways to climate
change during the B-A/ACR period.

8.5. Glaciers in the Americas during the YD in a Global Context

In many cases, the glaciers in North and Central America responded
to the YD by advancing. Retreat of the LIS slowed, and some sectors
advanced. At the end of the YD period, the LIS renewed its retreat.
Similarly, several fronts of the Fennoscandian Ice Sheet advanced
during the YD, although there was great variability in its different
margins (Cuzzone et al., 2016; Hughes et al., 2016a; Mangerud et al.,
2016; Stroeven et al., 2016; Patton et al., 2017; Romundset et al.,
2017). It appears that the maximum advance occurred at the end of the
YD period, at least at some margins (Mangerud et al., 2016; Romundset
et al., 2017). At the beginning of the Holocene, retreat of the Fennos-
candian Ice Sheet began anew, although this was interrupted during the
short-lived Preboreal oscillation, at 11.4 ka. Afterwards, retreat con-
tinued until the ice sheet disappearance at 10-9 ka (Cuzzone et al.,
2016; Hughes et al., 2016a; Stroeven et al., 2016). During the YD, ice
caps in some sectors of Britain, Franz Josef Land and Novaya Zemlya
also expanded (Hughes et al., 2016a; Patton et al., 2017; Bickerdike
et al., 2018). The glaciers in Iceland recovered during the YD and again
brought their fronts close to the present shoreline and, in some cases,
beyond it (Pétursson et al., 2015). With the Holocene came rapid re-
treat, interrupted by the Preboreal oscillation at 11.4 ka (Andrés et al.,
2019). In summary, the remnant European ice sheets grew during the
YD, but similar growth is less evident for the LIS.

The impact on glaciers of the YD is currently being studied in the
mountains of North and Central America. In Alaska, the only clear
evidence reported to date is in the south. However, it is evident that
there were small advances during the YD in many valleys of British
Columbia and the North Cascades. Recent dating has provided much
more evidence of small advances in the Wyoming and the Colorado
Rocky Mountains (Leonard et al., 2017a; Dahms et al., 2018, 2019) and
possibly the California Sierra Nevada (Phillips, 2017). YD advances are
clear in central Mexico and increasingly certain in Central America.
Glaciers advanced throughout the European Alps during the YD (Egesen
stadial) and built moraines intermediate in position between those of
the Oldest Dryas and those of the Little Ice Age (Ivy-Ochs, 2015). In
some valleys, there are moraines dating to the Preboreal oscillation that
lie between those of the YD and the Little Ice Age (Ivy-Ochs, 2015).
From glacier ELA depressions, it can be inferred that the annual tem-
perature was 3-5°C cooler in the Alps, the Tatra Mountains and else-
where in the Carpathians (Rinterknecht et al., 2012; Makos, 2015). New
information shows that glaciers advanced in cirques in the Mediterra-
nean mountains, for example in the Anatolian Peninsula (Sarikaya and
Ciner, 2017), the Balkans (Styllas et al., 2018), the Apennines (Giraudi,
2015), the Iberian mountains (Garcia-Ruiz et al., 2016; Oliva et al.,
2019), the French Pyrenées (Jomelli et al., 2020) and the High Atlas
(Hughes et al., 2018). At this time, we can conclude that the activity of
glaciers in North America and Europe during the YD is more similar
than it appeared a few years ago.

Glaciers also apparently advanced in the northern Andes during the
YD. However, in the central Andes, the YD was a period of glacier re-
treat, with the exception of the Altiplano where the Coipasa wet phase

46

Earth-Science Reviews 203 (2020) 103113

coincided with advances in the surrounding mountains. Glaciers may
also have advanced in these mountains at the beginning of the
Holocene, around 11 ka, but they all retreated after 10 ka. Glaciers in
Patagonia and on Tierra del Fuego retreated after the ACR, in the latter
area probably beyond the limits of the Little Ice Age. Glaciers in East
Africa retreated immediately after constructing ACR or YD moraines
(Mahaney, 2011). In the Southern Alps, as in Patagonia, the YD was a
period of glacier retreat (Shulmeister et al., 2019) with temperatures
about 1°C warmer than today (Koffman et al., 2017).

Glaciers in the Northern Hemisphere responded synchronously to
YD cooling by either stabilizing or advancing, but the timing of the
maximum extent differs spatially, as does the magnitude of advance; in
many areas, there is no evidence for YD glacier activity. In the Southern
Hemisphere, the South American monsoon intensified, thereby in-
creasing humidity, which caused tropical glaciers to advance. However,
in the temperate latitudes of this hemisphere, glaciers retreated, once
again showing their antiphase behavior compared to those in the north.

9. Conclusions

The decrease in temperature in the Americas during the GLGM was
4-8 °C, but changes in precipitation differed considerably throughout
this large region. Consequently, many glaciers of North and Central
America reached their maximum extent during the GLGM, whereas
others reached it later, during the HS-1 period. In the Andes, for ex-
ample, glaciers advanced during the GLGM, but this advance was not
the largest of the Last Glacial, except possibly on Tierra del Fuego. HS-1
was a time of glacier growth throughout most of North and Central
America; some glaciers built new moraines beyond those of the GLGM.
Glaciers in the tropical Andes stabilized or advanced during HS-1 and,
in many cases, overrode GLGM moraines. However, glaciers in the
temperate and subpolar Andes retreated during this period. Glaciers
retreated throughout North and Central America during the B-A inter-
stadial and, in some cases, disappeared. Glaciers advanced during the
ACR in some parts of the tropical Andes and in the south of South
America. This advance was strong in Patagonia. Limited advances have
been documented in high mountain valleys in North and Central
America during the YD. In contrast, glaciers retreated during this in-
terval in South America, except in some sectors of the northern Andes
and on the Altiplano where glacier advances coincided with the highest
level of the Coipasa paleo-lake cycle.

In summary, the GLGM was the culmination of glacier growth
during the last glacial cycle. Glaciers achieved their maximum extent in
many sectors before the GLGM, and even in individual sectors at dif-
ferent times, but the main northern ice sheets were largest within the
GLGM. The latter explains why orbital forcing triggered deglaciation
beginning about 21 ka across the Northern Hemisphere and somewhat
later in the Southern Hemisphere.

Glaciers in North America and Europe exhibit common behavior at
all latitudes through the Last Glacial Termination. This synchronous
behavior extended almost to the Equator. This commonality was clearly
influenced by pronounced shifts in ocean circulation (e.g. the AMOC),
but probably also reflected proximity to the great Northern Hemisphere
ice sheets that profoundly affected atmospheric circulation and tem-
perature.

Glaciers at temperate latitudes in the Southern Hemisphere fluc-
tuated synchronously, especially those in Patagonia and the Southern
Alps of New Zealand. Their behavior is generally opposite to that of
Northern Hemisphere glaciers during HS-1 and the B-A/ACR, but the
two are similar at the beginning and end of Last Glacial Termination.

Glaciers at tropical latitudes in the Southern Hemisphere show
greater diversity in their behavior, which is most likely related to shifts
in the ITCZ. A striking feature of the glacial history of Central America
and the tropical Andes is the persistence of relatively extensive moun-
tain glaciers through the Younger Dryas, long after those in North
America and Europe had retreated close to Holocene limits. One
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significant difference between much of the Andes and the Northern
Hemisphere is that the combination of extreme elevation and aridity
produces a larger sensitivity to precipitation than for the lower and
wetter mountain ranges of North America and Europe.

Once deglaciation began, there was a seesaw between the hemi-
spheres, which affected not only marine currents but also atmospheric
circulation and glacier behavior. This seesaw explains the opposing
behavior of many glaciers in the Northern and Southern Hemispheres
during HS-1 and the B-A/ACR. At the end of the B-A, it appears that
many mountain glaciers and minor ice sheets had achieved sizes similar
to those of the early Holocene. Subsequently, the YD ended deglaciation
in the south and led to the re-advance of some glaciers in the north.
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