Rapid communication

10Be ages from central east Greenland constrain the extent of the Greenland ice sheet during the Last Glacial Maximum

Lena Håkanssona,b,*, Jason Brinerb, Helena Alexandersonc, Ala Aldahand, Göran Possnerte

aDepartment of Geology, Quaternary Sciences, GeoBiosphere Centre, Sölvegatan 12, 223 62 Lund, Sweden
bDepartment of Geology, University at Buffalo, 876 NSC, Buffalo, NY 14260, USA
cDepartment of Physical Geography and Quaternary Geology, Stockholm University, SE-106 91 Stockholm, Sweden
dDepartment of Earth Sciences, Villavägen 16, SE-752 36 Uppsala, Sweden
eTandem Laboratory, Uppsala University, SE-751 21 Uppsala, Sweden

Received 21 February 2007; received in revised form 27 July 2007; accepted 9 August 2007

Abstract

Traditional ice sheet reconstructions have suggested two distinctly different ice sheet regimes along the East Greenland continental margin during the Last Glacial Maximum (LGM): ice to the shelf break south of Scoresby Sund and ice extending no further than to the inner shelf at and north of Scoresby Sund. We report new 10Be ages from erratic boulders perched at 250 m a.s.l. on the Kap Brewster peninsula at the mouth of Scoresby Sund. The average 10Be ages, calculated with an assumed maximum erosion rate of 1 cm/ka and no erosion (respectively, $17.3^{+2.3}_{-1.7}$ ka and $15.1^{+1.7}_{-1.7}$ ka) overlap with a period of increased sediment input to the Scoresby Sund fan (19–15 ka). The results presented here suggest that ice reached at least 250 m a.s.l. at the mouth of Scoresby Sund during the LGM and add to a growing body of evidence indicating that LGM ice extended onto the outer shelf in northeast Greenland.

1. Introduction

The role that ice sheets play in the global climate system depends largely on their connection to adjacent ocean basins. Pleistocene ice sheets rimming the North Atlantic Ocean heavily influenced global oceanic circulation and abrupt climate change (Bond et al., 1993; Broecker, 1997; Clark et al., 1999; Jennings et al., 2006). Recent studies, many taking advantage of new marine coring and imaging techniques and dating methods (e.g., Zreda et al., 1999; Landvik et al., 2005; Ottesen et al., 2005), have led to a new understanding of the extent and dynamics of ice sheet margins during the Last Glacial Maximum (LGM). For example, recent cosmogenic exposure dating studies from Arctic Canada depict ice that terminated on the continental shelf during the LGM (Briner et al., 2005), in some places overriding weathered, non-glacial landscapes (e.g., Briner et al., 2003; Davis et al., 2006).

Terrestrial-based studies in northeast Greenland depict LGM ice terminating at the mouth of fjords or on the inner shelf (e.g., Funder et al., 1998), whereas recent studies on the northeast Greenland continental shelf suggest that the Greenland Ice Sheet reached the shelf break during the LGM (e.g., O’Cofaigh et al., 2004). Here, we apply cosmogenic 10Be dating to erratics perched on a peninsula adjacent to the open ocean as an attempt to reconcile the marine studies with a terrestrial dataset.

2. Background and setting

The eastern margin of Greenland (spanning 60–81°N, Fig. 1) consists of two contrasting landscape types. South of Scoresby Sund (70°N), coastal areas consist of presently glaciated alpine topography, whereas north thereof a 100–200-km-wide unglaciated margin is composed of intensely weathered uplands dissected by deep fjords. Glacial troughs cross-cut the continental shelf outboard...
of major fjords both south and north of Scoresby Sund (Fig. 1).

Current reconstructions of the Greenland Ice Sheet south of Scoresby Sund, based on marine studies, depict an LGM margin at the edge of the continental shelf (Mienert et al., 1992; Andrews et al., 1996; Bennike and Björck, 2002). The glacial history of Scoresby Sund and northward is derived from both terrestrial and marine studies. Based on intense bedrock weathering and the lack of deposits from the last glaciation, interfjord uplands north of and at Scoresby Sund have long been thought to be ice-free throughout the LGM (Funder and Hjort, 1973; Hjort, 1981; Landvik, 1994). During recent decades, considerable effort has been put into both on- and offshore investigations of the Late Quaternary glacial history of this area. One large step was taken through the “Polar North Atlantic Margins” (PONAM) program, in which most investigations focused on the Scoresby Sund area (Fig. 1). This work led to the reconstruction of a large outlet glacier restricted to Scoresby Sund during the LGM, terminating at the Kap Brewster subaqueous moraine (Fig. 1; Dowdeswell et al., 1994) leaving Jameson Land and the adjacent continental shelf free from ice (e.g., Möller et al., 1994; Funder et al., 1998). The northern margin of the Scoresby Sund outlet glacier during the LGM is thought to relate to the Flakkerhuk ridge on southern Jameson Land (Fig. 1), which is an erosional landform composed of pre-LGM sediments (Tveranger et al., 1994). This implies an ice elevation near Hurry Fjord (Fig. 1a) of <70 m a.s.l. (Fig. 1; Funder et al., 1998). Inland of the Flakkerhuk ridge the sandstone bedrock is exposed and intensely weathered.

Kap Brewster, a peninsula composed of Tertiary basalt bordering the southern mouth of Scoresby Sund, lies ~25 km down fjord from the eastern end of the Flakkerhuk ridge (Fig. 1). Sandstone erratics are perched above 230 m a.s.l. on Kap Brewster. The only sources for lithology of these erratics are either from Jameson Land or from the floor of Scoresby Sund (Fig. 1; Henriksen, 1989). Mangerud and Funder (1994) hypothesized that these erratics were deposited by Scoresby Sund ice during the LGM, because the erratics are near relatively fresh E–W oriented glacial striae, covered by a thin mantle of drift.
3. Methods and results

Samples for 10Be dating were collected from four erratic sandstone boulders, 40–70 cm high, from Kap Brewster (Fig. 2) during the summer of 2005. All samples were taken from flat upper boulder surfaces except for KB-4, which was taken from a sloping edge ~20 cm above ground (Table 1). The erratics are resting on a flat, well-drained ~5 cm thick drift unit draped over basaltic bedrock and are situated on elevations between 230 and 251 m a.s.l. Samples were processed for 10Be analysis at the University at Buffalo following procedures in Briner (2003). 10Be measurements were made at the Tandem Laboratory, Uppsala University and ages were calculated using a 10Be production rate of 5.1 ± 0.3 atoms g$^{-1}$ yr$^{-1}$ (Stone, 2000). Site-specific production rates were corrected for altitude (Lal, 1991; Stone, 2000) and 10Be concentrations were adjusted for sample thickness and shielding (Table 1). Because these samples are from high latitude (~70° N), radionuclide production rates are not influenced by changes in the geomagnetic field (Gosse and Phillips, 2001). Bedrock weathering rates in arid arctic regions are relatively low (e.g., 1 mm ka$^{-1}$; Bierman et al., 1999). However, because the Kap Brewster erratics are composed of sandstone, we may expect higher erosion rates. The exact bedrock weathering rate is not known; therefore, we calculate 10Be ages for a range of values between 0 and 10 mm ka$^{-1}$.

The four different sandstone erratics have 10Be ages that range between 9.1 ± 1.6 and 16.6 ± 3.2 ka under 0 mm ka$^{-1}$ erosion conditions (Fig. 2), and between 9.8 ± 1.7 and 19.3 ± 3.8 ka under 10 mm ka$^{-1}$ erosion conditions (Table 1). The 10Be age of the youngest sample (KB-4) falls outside of the two-sigma range of the mean of the oldest three erratics. Since this sample was collected only 20 cm above the ground, compared to the other samples which were collected from 40- to 70-cm-high boulders, the anomalously younger age is likely due to shielding by

![Fig. 2. Sampling area and sampled erratic boulders. The sledge hammer for scale is 30 cm long. 10Be ages shown in figure are calculated with no erosion and are corrected for shielding and sample thickness.](image)
<table>
<thead>
<tr>
<th>Sample</th>
<th>Latitude</th>
<th>Longitude</th>
<th>Altitude (m)</th>
<th>Sample position</th>
<th>Thickness correction</th>
<th>^{10}Be age (ka), $e = 0$ mm/ka</th>
<th>^{10}Be age (ka), $e = 5$ mm/ka</th>
<th>^{10}Be age (ka), $e = 10$ mm/ka</th>
</tr>
</thead>
<tbody>
<tr>
<td>KB-1</td>
<td>70°09'03.4"N</td>
<td>12°04'31.5"W</td>
<td>230</td>
<td>Top surface, 0.984</td>
<td>1.277</td>
<td>1.06 ± 0.17</td>
<td>1.277</td>
<td>1.43 ± 0.22</td>
</tr>
<tr>
<td>KB-2</td>
<td>70°09'01.8"N</td>
<td>12°04'33.7"W</td>
<td>230</td>
<td>Top surface, 0.984</td>
<td>1.277</td>
<td>0.99 ± 0.13</td>
<td>1.09 ± 0.13</td>
<td>1.27 ± 0.23</td>
</tr>
<tr>
<td>KB-3</td>
<td>70°09'03.2"N</td>
<td>12°04'39.4"W</td>
<td>230</td>
<td>Top surface, 0.976</td>
<td>1.05 ± 0.10</td>
<td>0.85 ± 0.10</td>
<td>1.01 ± 0.10</td>
<td>1.21 ± 0.20</td>
</tr>
<tr>
<td>KB-4</td>
<td>70°09'03.6"N</td>
<td>12°04'49.8"W</td>
<td>230</td>
<td>Top surface, 0.976</td>
<td>1.05 ± 0.10</td>
<td>0.85 ± 0.10</td>
<td>1.01 ± 0.10</td>
<td>1.21 ± 0.20</td>
</tr>
</tbody>
</table>

- **Sample position**: Describes where on the boulder and from which height above ground the sample is taken.
- **Thickness correction**: Using exponential decrease in nuclide production and bulk density of 2.32 g/cm.
- **Shielding correction**: For shielding by distant objects (and shielding by sample geometry for KB-4). Shielding is neglected.
- **^{10}Be scaling factor**: After Stone (2000).
- **^{14}C correction**: For blank (3.0195 × 10^{-14} atoms g^{-1}).
- **^{10}Be age (ka)**: Calculated with erosion rates of 0 mm/ka, 10 mm/ka, and 100 mm/ka.

Table 1: ^{10}Be results from Kap Brewster

OLM. Håkansson et al. / Quaternary Science Reviews 26 (2007) 2316–2321

4. Implications for the LGM ice configuration

Our ^{10}Be ages are consistent with exposure of Kap Brewster soon after the LGM, thus suggesting that the peninsula was covered by ice during the LGM as has been hypothesized by Mangerud and Funder (1994). The elevation of the erratics indicates a minimum thickness of c. 250 m a.s.l. for this ice. To reconcile ice being >250 m thick on Kap Brewster, yet <70 m thick on the opposite side of Scoresby Sund, earlier reconstructions (Mangerud and Funder, 1994) have suggested that the southern side of the Scoresby Sund glacier was higher because it was fed by local tributary glaciers from the south (Fig. 3a). This ice configuration implies that ice-flow over Kap Brewster was directed from the basalt plateaus south of Scoresby Sund, where there is no source for the sandstone erratics (Fig. 1a). Thus, it would require that erratics were deposited by an earlier extensive advance of the Greenland Ice Sheet and later re-deposited on Kap Brewster by a local ice merging with the outlet glacier in Scoresby Sund during the LGM. In this scenario we would expect to have inherited ^{10}Be in the samples, since they would have been exposed before the LGM and we would expect our samples to be older (have higher ^{10}Be concentrations). Rather we suggest that the young erratics on Kap Brewster require LGM ice with flow lines parallel to the fjord trough, reaching at least 250 m a.s.l. at the mouth of Scoresby Sund.

If the glacial striae on Kap Brewster indeed are from the LGM as suggested by Mangerud and Funder (1994), this indicates that the ice was sliding at its bed at 250 m a.s.l. during this time. However, at the same elevation on the north side of Scoresby Sund the terrain is intensely weathered. It is possible that active ice within the previously depicted LGM limit on Jameson Land was buttressed by cold-based ice preserving the old landscapes beyond this limit (Fig. 3b). In other settings it has been found that cold-based ice can override and preserve weathered non-glacial landscapes (Kleman, 1994; Fabel et al., 2002; Briner et al., 2003, 2006; Sugden et al., 2005; Davis et al., 2006). The Scoresby Sund trough is deepest in the southern part, whereas the northern side gently rises towards Jameson Land (Fig. 3; Dowdeswell et al., 1993). Ice filling Scoresby Sund would be channelized in the southern part bounded by the southern steep slope of the trough, thus facilitating fast ice flow in this part of the trough. Thus, the asymmetric trough morphology could explain why ice was eroding its bed on Kap Brewster, yet was cold-based at the same elevation on Jameson Land.

Sediment cores from the northern part of the Scoresby Sund fan document an increased sediment flux to this part of the fan between 19 and 15 ka, interpreted as ice rafted...
debris from ice situated at the Kap Brewster moraine more than 100 km away (Stein et al., 1993; Nam et al., 1995). Further south, at the mouth of the cross-shelf trough, Dowdeswell et al. (1997) show debris flow activity during the LGM. In line with traditional LGM ice reconstructions (e.g., Funder et al., 1998), they suggest that the debris flow lobes might derive either from strong cross-shelf transport from an ice front located at the mouth of Scoresby Sund during the LGM or from direct sediment delivery from extensive ice earlier during the last glacial cycle. Other studies of similar glacier-fed subaqueous fans have shown that the large number of debris flows making up these fan systems is a result of ice at the continental shelf break (King et al., 1996; Vorren and Laberg, 1997; Vorren et al., 1998; Dowdeswell and Elverhøi, 2002; Sejrup et al., 2004).

Based on a regional synthesis of the Greenland margin, Bennike and Björck (2002) suggested that LGM ice covered at least parts of the broad and shallow northeast Greenland shelf. Seismic data off Kaiser Franz Josef Fjord show a prominent moraine ca 50 km from the shelf break interpreted to be a LGM terminal or recessional moraine (Fig. 1b; Evans et al., 2002). Furthermore, O’Cofaigh et al. (2004) suggest that submarine channels on the continental shelf slope emanating from the lip of shelf troughs are generated by glacier ice on the outer shelf or at the shelf break. Radiocarbon dates show that mass wasting in these channels ceased around 13 ka, indicating that the last time these channels were active was during the LGM.

The traditional LGM reconstructions have suggested two distinctly different ice sheet regimes along the coast of East Greenland; ice to the shelf break south of Scoresby Sund and ice extending no further than to the inner shelf north thereof. The present study challenges these reconstructions by adding to a growing body of evidence indicating LGM ice extending onto the outer shelf also at and north of Scoresby Sund.

5. Conclusion

Previous LGM reconstructions of the northeastern sector of the Greenland Ice Sheet are based mainly on terrestrial studies and depict ice terminating at the mouth of fjords and sounds. In contrast, recent marine data from the northeast Greenland continental shelf suggest that the ice extended onto the outer shelf or even as far as the continental shelf break during the this time. Our average 10Be ages, calculated with an assumed maximum erosion rate of 1 cm/ka and no erosion (respectively 17.3 ± 2.9 and 15.1 ± 2.5 ka) overlap with a period of increased sediment input on the northern part of the Scoresby Sund fan (19–15 ka), indicating the timing of the LGM ice sheet advance in East Greenland. The results presented here suggest that ice reached at least 250 m a.s.l. at the mouth of Scoresby Sund during the LGM, implying that ice reached the outer shelf at this time and that sliding ice in the fjord trough may have been buttressed by cold-based ice on Jameson Land.

Acknowledgments

The fieldwork was funded by the Helge Axson Johnson Foundation and the Swedish Association for Anthropology and Geography (SSAG). The Danish Polar Centre and the Swedish Polar Research Secretariat provided logistic support. Christian Hjort is acknowledged for valuable discussions. We also wish to thank Jon Landvik and an anonymous reviewer for helpful comments and suggestions on the manuscript.

References

