Subaqueous and Subglacial Volcanoes

References:

Encyclopedia of Volcanoes, pp. 383-402 Francis, pp. 21-339 Cas and Wright, pp. 406-409

Seamount Morphology

- Typically circular and flat-topped
- With or without summit caldera
- A summit caldera indicates a magma chamber (however long- or short-lived) within the construct of the seamount itself

Surtsey Example

Seamount Composition

- Most seamounts are basaltic
- Larger ones evolve to more alkalic compositions with time
- Rare rhyolitic examples

Stratigraphy

- Commonly composed of pillowed flows
- Capped with ponded sheet flows in the caldera
- Hyaloclastites occur if the seamount is tall enough (within ~2000 m of sea surface)

Rhyolite Seamounts

Rare features

Island of Ponza

Tyrrhenian Sea

Obsidian feeder dikes

Pumice breccia

Subglacial Volcanoes

- Form table mountains
- Also called "tuyas" in Iceland
- These volcanoes erupted beneath a sheet of ice

Main Units

- Pillows
- Pillow breccias
- Hyaloclastites
- Capping lavas

Initial Stage

- Lava is under a great deal of pressure
- Behaves similarly to deep-marine lavas
- Typical pillow lavas form

Later Stage

- As the lava pile grows, the overlying pressure decreases
- Eventually, the lava is overlain by a relatively thin layer of meltwater
- Explosions can occur
- This produces hyaloclastites above the pillow lavas

Final Stage

- When the lava pile reaches the surface of the glacier
- "Normal" subaerial basaltic lava (usually pahoehoe) is emplaced
- The resulting volcano can be used to determine the thickness of ice at the time of eruption.

