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Abstract
The retreat of the Barents Sea Ice Sheet was a major event in the last deglaciation of the Arctic. Numerous studies document 
the fine details of the seafloor that reveal a highly dynamic ice sheet somewhat analogous to the West Antarctic Ice Sheet. 
Despite detailed records of the Barents Sea Ice Sheet’s dynamics, comparatively few studies have provided chronological 
control that constrains its history of final collapse. We report cosmogenic 10Be exposure ages from 14 glacial erratics, nine 
moraine boulders and one bedrock surface from southern Bjørnøya, an island situated in the Barents Sea between Svalbard 
and Norway. 17 of 24 samples average 12.4 ± 0.5 ka with no significant relationship between age and elevation. We inter-
pret the ages to represent the time when Bjørnøya, and the shallow Spitsbergenbanken upon which it sits, became finally 
deglaciated following break up of the Barents Sea Ice Sheet. The timing of deglaciation, overlapping with the early Younger 
Dryas, suggests that Younger Dryas climate change did not reverse overall glacier recession, although we cannot rule out a 
stillstand or re-advance during the early Younger Dryas.
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Introduction

Information derived about the past response of ice sheets 
to climate change can lead to an improved understand-
ing of future ice sheet stability and sea level change. The 
behavior of contemporary ice sheets in the face of ongoing 
rapid climate change is complex, and ice sheet dynamics 
ensure that the relationship between climate forcing and ice 
sheet response is not simple [1, 19]. Past ice sheets prone 
to collapse are of particular importance, and for this reason 
the configuration and history of the Barents Sea Ice Sheet 
(Fig. 1) has been the focus of many studies (e.g., [8, 15, 16, 
24, 40). In addition, because the marine-based Barents Sea 
Ice Sheet is often likened to the West Antarctic Ice Sheet, 
many studies have focused on its dynamics (e.g., [13, 30, 
29, 43).

During the Last Glacial Maximum the margin of the 
Barents Sea Ice Sheet was located along the western and 
northern continental shelf break; ice flowed over or merged 
with ice domes on Svalbard, and converged with ice flowing 
from Scandinavia (Fig. 2; e.g., [16, 43]). It is thought that 
the ice sheet started to thin between 26 and 20.5 ka in high 
elevation regions of northwestern Svalbard [10, 14]. The 
recent synthesis of Hughes et al. [15] depicts the marine ice 
margin initiating retreat from the shelf break around 20 ka 
in the major troughs that drained the ice sheet (Fig. 2). Sub-
sequent retreat progressed until the Barents Sea Ice Sheet 
had mostly retreated out of the central Barents Sea between 
~ 15 and 14 ka, and back to terrestrial centers between 14 
and 12 ka [Hughes et al. 15].

Despite the overall configuration and timing of deglacia-
tion of the Barents Sea Ice Sheet being generally known, 
there are relatively few locations in the Barents Sea with 
absolute ages of ice margin retreat. The Barents Sea floor 
contains deep troughs and shallow banks, but there are no 
islands in the central Barents Sea, leaving 14C ages from 
marine sediment cores being the best option for chronol-
ogy. However, an opportunity exists to constrain the tim-
ing of ice retreat from the western Barents Sea at Bjørnøya, 
a remote island between Norway and the Svalbard archi-
pelago (Fig. 1), using cosmogenic 10Be exposure dating. 
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Bjørnøya lies along the shallow Spitsbergenbanken (water 
depth 30–80 m) and near the mouths of the Bjørnøyrenna 
and Storfjordennna glacial trough systems that drained the 
Barents Sea Ice Sheet via the massive Bjørnøya and smaller 
Storfjorden paleo-ice streams (e.g., [21, 24, 29, 43]). In this 
paper, we report 24 10Be exposure ages from Bjørnøya that 
constrain the final deglaciation of the Barents Sea Ice Sheet 
along southern Spitsbergenbanken.

Setting

Bjørnøya (178 km2; Fig. 3) has relatively subdued and low-
lying topography in the north and more relief in its eastern 
and southern portions, with some summit elevations reach-
ing 360 m asl (Antarcticfjellet), 421 m asl (Alfredfjellet), 
and 536 m asl (Myseryfjellet). Bjørnøya is situated at the 
oceanographic polar front where cold, relatively fresh Arctic 
Water masses meet warm and saline Atlantic water [41]. 
At present, the North Atlantic Current splits into branches 
west and south of Svalbard: the West Spitsbergen Current 
travels northward along western Svalbard, and the Nord-
kapp Current enters into the Barents Sea and eventually into 

the Arctic Ocean. Weather observations have occurred on 
Bjørnøya since 1910 AD; the mean annual temperature is 
− 1.7 °C, average winter snow depth is 10 cm, and mean 
annual precipitation is 371 mm (1960–1990, eKlima.met.
no). The bedrock geology of the island consists of sedimen-
tary formations, including carbonate, sandstone, shale and 
conglomerate dating from the Late Proterozoic to Mesozoic 
[45].

To date, the most comprehensive study of the glacial his-
tory of Bjørnøya is that of Salvigsen and Slettemark [36], 
who documented thin patches of till, erratics of local prov-
enance, and glacial erosional features indicative of outward 
radiating ice flow from central Bjørnøya. There is no evi-
dence for isostatic uplift on Bjørnøya, and thus it appears 
that the island is beyond the zero meter isobase [24, 36]. 
Salvigsen and Slettemark [36] concluded that Bjørnøya was 
covered by local ice only, and not by the Barents Sea Ice 
Sheet. Landvik et al. [24] suggested the alternative that the 
erosional imprint represents a final phase of ice cover (e.g., 
during final deglaciation), and that the island could have 
been covered by Barents Sea ice earlier (e.g., during the Last 
Glacial Maximum; cf Landvik et al. [23]).

In terms of chronology, the best constraint to date for 
the deglaciation of Bjørnøya itself is a 14C age obtained 
by Wohlfarth et al. [44] from a macrofossil in basal lake 
sediments in north-central Bjørnøya of 9795 ± 90 14C year 
BP (11,195 ± 400 cal year BP; mid-point ± 2σ age range). 
Offshore, there is additional chronology that is useful for 
constraining the deglaciation of Bjørnøya. The ice stream 
occupying Storfjordrenna began to retreat prior to 19.4 cal 
ka, and perhaps between 21.2 and 19.8 cal ka [18, 32]. The 
major ice stream occupying Bjørnøyrenna began its final 
deglaciation ~ 16.6 cal ka following a readvance [35]. A 
comparatively smaller trough, Kveithola, exists off north-
eastern Bjørnøya, where 14C ages from marine sediment 
cores constrain deglaciation to prior to 14.2 cal ka [34]. 
Rüther et al. [34] interpreted ice-rafted sediments dating to 
between 14.2 and 13.9 cal ka to be sourced from ice over 
Spitsbergenbanken, after which marine evidence for proxi-
mal ice is absent.

Methods

We collected 23 samples from boulders for 10Be dating in 
the southern part of Bjørnøya (Figs. 3, 4). One additional 
sample was collected from a glacially-sculpted bedrock sur-
face (AEM-8). Most boulders stand 1–3 m above the land 
surface, although several are less than one meter above the 
surface. We collected samples for 10Be dating from three 
main areas from a range of elevations throughout southern 
Bjørnøya (Figs. 3, 4). The first area is west of Ellasjøen; 
the samples AEM and IEM are taken on small bouldery 

Fig. 1  Map of the western Barents Sea showing Svalbard and other 
important places mentioned in the text. Bathymetric data from 
IBCAO Version 3.0 [17]
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end moraines between 17 and 54 m asl. Samples were also 
collected from the ridges surrounding Ellasjøen; Landnørd-
ingsvika lies between 59 and 139 m asl, and the Skurven 
ridge ranges from 121 to 153 m asl. The third sampling area 
is located on summits Alfredfjellet (at 293 m asl) and Ant-
arcticafjellet (at 340–351 m asl).

Samples were collected with a saw, hammer and chisel. 
Sample thickness was measured in the field and was between 
1.6 and 4.1 cm. Sample elevation and position was recorded 
with a barometrically corrected GPS that was adjusted to 
known altitudes several times during the day; topographic 
shielding was calculated with a clinometer. Given low aver-
age winter snow depth, we calculate ages with no snow 
shielding. We also note from past experience collecting 
samples in the Arctic during the spring that boulders pro-
truding above the ground are usually windswept and not 

covered by snow. Boulder surfaces may have experienced 
surface erosion and weathering since deposition. Boulder 
surface erosion would vary according to lithology (the 10Be 
ages are mostly from sandstone lithologies, but sourced from 
different formations). We are not aware of studies on erosion 
rates of these lithologies and, therefore, report ages assum-
ing zero boulder surface erosion. When we calculate the 
10Be ages using a nominal Arctic rock surface erosion rate 
of 1 mm  kyear− 1, [4] the ages become 0.3–2.0% (average 
1.1%) younger.

Physical and chemical processing of rock samples for 
10Be analysis took place at the University at Buffalo Cos-
mogenic Nuclide Laboratory following a modified version 
of previously described procedures [7, 20]. Approximately 
225 µg of 9Be carrier was added during sample prepara-
tion; beryllium ratios were measured by accelerator mass 

Fig. 2  Maps showing the degla-
ciation of the western Barents 
Sea modified from Hughes et al. 
[15]
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spectrometry at Lawrence Livermore National Labora-
tory and normalized to standard 07KNSTD3110 with a 
reported ratio of 2.85 × 1012 [28, 33]. Procedural blank 
ratios were 1.44 × 10− 15, 2.99 × 10− 15, and 4.17 × 10− 15, 
equating to an average background correction of 2.12% of 
the sample total (except for sample KH-1, age 3.5 ± 0.1 ka, 
the background correction is 10.9%). One-sigma analytical 
uncertainties on background-corrected samples range from 
1.63 to 5.55% and average 2.39%.

The individual 10Be ages are reported in Table 1. The 
10Be ages were calculated via the CRONUS-Earth online 
exposure age calculator [3, version 3, http://hess.ess.
washi ngton .edu/] using a production rate for the Arctic 
(3.93 ± 0.15 atoms g  year− 1 using Lm scaling; Young 
et al. [46]) and the Lm scaling scheme [3, 22, 38]. Ages in 

Table 1 are also reported using the LSDn scaling scheme 
[25; see Table 1 for details].

Results and interpretation

The 10Be ages of glacially transported sandstone and con-
glomerate boulders are from elevations spanning from 17 
to 350 m asl and range from 3.5 to 25.6 ka (Table 1; Fig. 5). 
Notable features of the dataset are an anomalously young 
erratic (KH-1; 3.5 ± 0.1 ka), a cluster of erratic ages that 
average 12.4 ± 0.5 ka (n = 16), and six older erratics that 
range from 14.0 to 25.6 ka (Fig. 5). The bedrock sample 
(AEM-8) yields a 10Be age of 12.2 ± 0.3 ka (Table 1). When 

Fig. 3  Map of southern Bjørnøya (inset shows all of Bjørnøya) show-
ing sample ID and 10Be age. Italic (sample AEM-8) designates bed-
rock sample. Sample details reported in Table  1. Moraines west of 

Ellasjøen depicted in green (samples IEM and AEM). Location of 
Bjørnøya shown in Fig.  1. Basemap (and inset) from toposvalbard.
npolar.no; contour interval is 50 m

http://hess.ess.washington.edu/
http://hess.ess.washington.edu/
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including bedrock surface erosion, the age cluster becomes 
12.3 ± 0.5 ka.

We interpret the mode in erratic ages at 12.4 ka as the 
timing of deglaciation of Bjørnøya. Because there is no 
significant relationship between age and elevation, we 
suggest that the entire island may have become deglaci-
ated at approximately the same time. For example, the two 
erratics from Antarcticafjellet, at 340 and 351 m asl, are 
12.3 ± 0.2 and 12.2 ± 0.2 ka, respectively, and one erratic 
from Alfredfjellet at 293 m asl is 12.4 ± 0.2 ka. The ages 
from the bouldery moraines at low elevation to the west of 
Ellasjøen (AEM and IEM samples) range from 13.4 ± 0.3 
to 11.5 ± 0.6 ka and average 12.5 ± 0.5 ka. The bedrock sur-
face near these moraines dates to 12.2 ± 0.3 ka, the same 
age as the other boulders across Bjørnøya, suggesting that 
ice cover over the low-elevation portions of the island was 
warm-based and erosive, which is supported by the observa-
tions of Salvigsen and Slettemark [36].

There are six samples that pre-date the cluster of ages at 
12.4 ± 0.5 ka, at ~ 14 ka, ~ 16 ka, one at ~ 19 ka and three 
between ~ 24 and ~ 26 ka. We attribute these older ages as 
being influenced by inheritance, a common feature in 10Be 
age datasets of glacial boulders from the high latitudes (e.g., 
[6, 10, 12]). The high elevations of Bjørnøya lack geomor-
phic evidence of erosive ice, and Salvigsen and Slettemark 
[36] suggested that the mountain summits potentially rose 
above a local ice cap surface. There has been much progress 
in recent years that has led to a new model of an ice sheet’s 
imprint on the landscape [23]; this model of glaciation 
includes ice cover in landscapes that do not show evidence 
of erosive ice. This new view is consistent with cosmogenic 
10Be exposure age datasets containing inheritance to varying 
degrees depending on where in the glacial erosion regime 
they are from. In addition, this view is compatible with ice 
overriding Bjørnøya, and a portion of the 10Be age dataset 
being influenced by inheritance.

Discussion

The pattern of deglaciation in the Barents Sea reveals that 
ice retreat initiated in the major troughs, followed by ice 
retreat from shallow banks and finally by ice margins reced-
ing into landscapes with extant glaciers [13, 15]. Without a 
higher spatial concentration of age constraints in the western 
Barents Sea, it is difficult to know what the ice configura-
tion was as it receded onto Bjørnøya. Rüther et al. [34] also 
used marine sediment stratigraphy and provenance from 
Kveithola to depict ice margin recession to an isolated ice 
cap mantling southern Spitsbergenbanken. Rüther et al. [34] 
depicted Bjørnøya as becoming ice free sometime during the 
Allerød (~ 14–13 ka). Hughes et al. [15], on the other hand, 
depicted Bjørnøya becoming ice free earlier, between 15 Ta
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and 14 ka. We suppose it is possible that Bjørnøya deglaci-
ated between 15 and 14 ka and subsequently re-grew and, 
therefore, we are dating the timing of final deglaciation. 
Although we cannot rule this out, we point out that the age 
control from near Bjørnøya was previously too sparse to lend 
very high confidence in a 15–14 ka age for deglaciation. In 
any case, like Rüther et al. [34], Hughes et al. [15] recon-
structed ice lingering over Spitsbergenbanken longer than 
in adjacent areas of the Barents Sea. The direct chronology 
that we obtained for the final deglaciation of Bjørnøya of 
12.4 ± 0.5 ka is younger by one to two thousand years than 
these previous reconstructions. This suggests that ice lin-
gered on Spitsbergenbanken, and possibly in other shallow 
portions of the Barents Sea, for longer than what is shown by 
Hughes et al. [15]. This is consistent with the reconstruction 
of Hogan et al. [13] in the northern Barents Sea, which simi-
larly depicts ice remaining in shallow portions of the Barents 
Sea until ~ 13.5 to ~ 11.5 ka, although their ice extents are 
based on relatively few age constraints.

The timing of deglaciation of Bjørnøya, overlapping with 
the early portion of the Younger Dryas period (12.9–11.7 ka) 
provides some insight about Younger Dryas climate change 
in this region. It suggests that there was not a strong glacier 

Fig. 4  Photographs of selected boulders sampled for 10Be dating on Bjørnøya (locations shown in Fig. 2; ages found in Table 1)

Fig. 5  The distribution of 10Be ages on Bjørnøya; thin lines represent 
each individual 10Be age and bold line is the summed probability of 
all 10Be ages
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response during the Younger Dryas. Indeed, the fact that 
ice finally disappeared during the Younger Dryas counters 
against it being a period of summertime cooling favorable 
for ice growth. This contrasts with advances during Younger 
Dryas farther south, in western Norway [26]. On the other 
hand, our finding is compatible with the lack of a glacier 
advance beyond the present ice extent in western Spitsbergen 
[27], and elsewhere in the Arctic (e.g., Pendleton et al. [31]).

Before making firm conclusions about the timing of ice 
recession in comparison to the Younger Dryas period, how-
ever, we must consider the average 10Be age using other 
possible production rates. The average age calculated using 
the production rate of Borchers et al. [5; based on two cali-
bration sites each in the northern and southern hemispheres, 
reported value using Lm scaling is 4.00 atoms g  year− 1] is 
12.0 ± 0.6 ka, and using the Scandinavia-wide production 
rate from Stroeven et al. ([39]; based on four calibration sites 
in Sweden and Norway; reported value using Lm scaling 
is 4.13 ± 0.11 atoms g  year− 1) is 12.1 ± 0.6 ka. We prefer 
the average 10Be age using the Baffin Bay rate of Young 
et al. [46; based on two sites on Greenland and one on Baf-
fin Island] because it is indistinguishable from the average 
of four sites from Norway (two from Goehring et al. [11] 
and two from Fenton et al. [9]), and in addition it is indis-
tinguishable from the northeastern North America produc-
tion rate [2]. Regardless, we cannot rule out that Bjørnøya 
deglaciated just prior to the Younger Dryas nor at the end 
of the Younger Dryas, although we find it more likely given 
all age calculations and uncertainties, that the island likely 
deglaciated as late as the middle Younger Dryas, and as early 
as the beginning of the Younger Dryas. There is some evi-
dence from northern Norway for glacier advance during the 
Allerød and retreat during the middle Younger Dryas [37, 
42]. We speculate that this could also be a possibility for 
the ice cap covering Bjørnøya, given the presence of small 
moraines, which may delimit a stillstand or re-advance that 
occurred within the Younger Dryas.

Conclusions

Our best estimate for the age of final deglaciation of 
Bjørnøya is 12.4 ± 0.5 ka, which overlaps with the Younger 
Dryas. Given current uncertainties, we cannot rule out that 
Bjørnøya deglaciated prior to, or even after, the Younger 
Dryas. This timing of deglaciation for the entire island from 
low to high elevation suggests that ice lingered over the shal-
low Spitsbergenbanken in the western Barents Sea later than 
prior work depicts. The significance of the final collapse 
of ice in the Barents Sea and the opening of a new gate-
way between Atlantic and Arctic ocean basins could have 
important ramifications for the climate system. Additional 
10Be ages from other southern and eastern islands within 

the Svalbard archipelago could help to further constrain the 
timing of the final demise of the Barents Sea Ice Sheet.
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