
LETTERS
PUBLISHED ONLINE: 16 SEPTEMBER 2015 | DOI: 10.1038/NGEO2524

Minimal erosion of Arctic alpine topography
during late Quaternary glaciation
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and Anne Hormes1†

The alpine topography observed in manymountainous regions
is thought to have formed during repeated glaciations of
the Quaternary period1,2. Before this time, landscapes had
much less relief1–3. However, the spatial patterns and rates of
Quaternary exhumation at high latitudes—where cold-based
glaciers may protect rather than erode landscapes—are not
fully quantified. Here we determine the exposure and burial
histories of rock samples from eight summits of steep alpine
peaks in northwestern Svalbard (79.5◦ N) using analyses of
10Be and 26Al concentrations4,5. We find that the summits
have been preserved for at least the past one million years.
The antiquity of Svalbard’s alpine landscape is supported by
the preservation of sediments older than one million years
along a fjord valley6, which suggests that both mountain
summits and low-elevation landscapes experienced very low
erosion rates over the past million years. Our findings
support the establishment of northwestern Svalbard’s alpine
topography during the early Quaternary. We suggest that,
as the Quaternary ice age progressed, glacial erosion in the
Arctic became ine�cient and confined to ice streams, and
high-relief alpine landscapes were preserved by minimally
erosive glacier armour.

Glaciers are among the most powerful eroding agents on Earth,
transforming low-relief topography into over-deepened, high-relief
landscapes7. The current scientific consensus is that the extensive
relief characterizing much of the world’s mountainous regions
was generated during the Quaternary1,2. Furthermore, the height
of active mountain ranges is thought to be directly influenced
by the extent of glaciation through an efficient denudation
mechanism whereby glacial erosion limits summit elevation above
the equilibrium line altitude8,9. The correspondence of snowline
and maximum elevation of mountain ranges has been recognized
for over a century10, although whether such a relationship is
governed by topographic controls on snowline altitude or erosional
controls on topography has remained unsettled8. Despite growing
evidence for this ‘glacial buzzsaw’, it remains uncertain if its effect
is common to all mountain ranges8,11. For example, high-latitude
ice sheets preserved pre-Quaternary continental landscapes where
they were cold-based12,13. In one case even alpine topography is
documented to have been armoured by cold-based ice during the
Quaternary14. Here we show that glacier armour protected steep
alpine summits of northwestern Svalbard during themiddle and late
Quaternary, implying that alpine topography in the Arctic evolved
at an earlier time.

Northwestern Svalbard (79◦–80◦ N; Fig. 1) is occupied by
interconnected ice fields where spectacular contrasts in landscape
exist from the coastal strandflats in the south (Mitrahalvøya) and
the north (Reinsdyrflya) to tall, steep mountains in the interior.
Today, >60% of northwestern Svalbard is covered by glaciers, many
of which reach adjacent seas. Mountain summits reach >1,400m
above sea level (m a.s.l.) with Jäderinfjellet and Aurivilliusfjellet in
the north (Fig. 2) rising to 1,150 and 1,107m a.s.l., respectively, and
to 1,458m a.s.l. farther south with Kongen (Fig. 1). The onset of
the repeated glaciations of the Svalbard Barents Sea Ice Sheet (SBIS)
is recorded by the intensification of ice-rafted debris ∼3.5–2.4Myr
ago on the Barents Sea margin15. During the Quaternary, the SBIS
advanced to the shelf edge a number of times, and offshoremoraines
delimit ice sheet termini on the western Svalbard shelf15. A concept
of multiple ice domes and fast-flowing ice streams separated by
inter-ice-stream areas with slow-flowing or even stagnant ice during
peak glacial advances has been proposed to characterize recent
glaciations16,17. Evidence for ice-free areas in coastal northwestern
Svalbard during the Last Glacial Maximum suggests that ice was not
thick enough to bury the Svalbard archipelago completely18.

Eight alpine summits in northwestern Svalbard were sampled
for 26Al/10Be burial dating5 (Figs 1 and 2). 26Al and 10Be
concentrations in ten samples reflect cumulative exposure and
burial; eight of ten samples show extensive burial (Fig. 3).
Single nuclide 10Be ages from the eight buried samples from
Jäderinfjellet (1,150m a.s.l.), Hornemantoppen (1,097m a.s.l.;
n=2), Granitten (1,087m a.s.l.), Aurivilliusfjellet (1,107m a.s.l.),
Kaffitoppen (974m a.s.l.), Kjoekkensjefen (1,028m a.s.l.) and
Kongen (1,458m a.s.l.) range from 41.5±2.7 kyr to 198.6±13.0 kyr
(see Supplementary Information) and corresponding 26Al ages
range from 26.8 ± 2.2 to 121.3 ± 8.2 kyr. The 26Al/10Be ratios
range between 3.41±0.21 and 4.53 ± 0.23 (Fig. 3; For complete
information see Supplementary Table 2).

We calculate total minimum surface exposure histories between
0.95 and 1.63Myr for these eight samples. The total histories
can be subdivided into minimum cumulative exposure and burial
durations; exposure ranges from 0.07 to 0.4Myr, and the summits
have been shielded for a minimum of 0.78 to 1.24Myr. These long
burial durations reveal very limited erosion at most of the summits
we sampled (for detailed info on single and paired maximum
erosion rates see Supplementary Table 2). Two of our ten samples
indicate no burial; these are from Atgeiren (930m a.s.l.), and
the second sample from Kongen (1,458m a.s.l.; Fig. 1). Atgeiren
yields a 10Be age of 214.3 ± 13 kyr, a corresponding 26Al age of
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Figure 1 | Setting of northwestern Svalbard. The location of Fig. 2 is shown
by the black rectangle. The two insets show Svalbard’s global position and
the location of northwestern Svalbard on the Svalbard archipelago.
Basemap from the Norwegian Polar Institute. Blue marks the extension of
today’s glaciers from recent satellite imagery. G, Granitten; H,
Hornemantoppen; A, Aurivilliusfjellet; J, Jäderinfjellet; Kj, Kjøkkensjefen; At,
Atgeiren; Ka, Ka�toppen; K, Kongen.

226.8±15.9 kyr, and a 26Al/10Be ratio of 6.79± 0.33. The coastal
location of this peak, far from the core of the northwestern
Svalbardmountains, would support the indication that this peak has
remained ice-free during the bulk of themiddle and lateQuaternary,
consistent with previously published findings18. The one sample
from Kongen yields a 10Be age of 188.2 ± 11.5 kyr, a corresponding
26Al age of 179.1±15.4 kyr, and a 26Al/10Be ratio of 6.20± 0.42.
The lack of burial in Konge-2 could be explained by a block fall
sometime during the middle Quaternary that removed previously
accumulated nuclides; given the steep nature of our study summits,
we find it not surprising that some of our data show evidence for
sporadic mass wasting.

These first reported paired cosmogenic-nuclide data from
alpine summits in the Arctic indicate significant antiquity and
long-term burial of the seemingly fragile mountain summits. The
summit ages are older than most cosmogenic-nuclide-derived ages
previously reported from ice sheet landscapes elsewhere in the
Northern Hemisphere, which tend to be from lower relief areas19,20
(Fig. 3). For example, minimum burial-exposure ages from inter-
fjord landscapes of selective erosion in other Arctic environments
thought to be only periodically occupied by cold-based ice are
typically 0.3–0.7Myr (ref. 21). Thus, we find it surprising that
Svalbard’s summits are 0.9–1.6Myr old and have been eroded less
than non-alpine ice sheet landscapes. Furthermore, owing to long
periods of burial, the survival of alpine summits is not likely to be the
result of the peaks remaining ice-free. Rather, it seems that ice sheets
have cyclically occupied the landscape throughout the Quaternary,
apparently without significantly modifying the alpine uplands.

In northwestern Svalbard an increase in 10Be concentrations in
bedrock with increasing elevation has also been found17, indicating
a decrease in erosion with rising elevation in this area. Despite
this finding, outcrops of beach deposits that are >1Myr old
along the northern shore of Kongsfjorden6 (Fig. 1), along with
bedrock strandflats in the area considered to be of some antiquity22,
require non-efficient glacier erosion during the latter portion of the
Quaternary, even in some low-elevation areas. These data reveal
complex patterns of erosion, where significant erosion is limited
to only the central axes of fjords and valleys, possibly related to
the location of ice stream activity23 (Fig. 4). Furthermore, offshore
sedimentary data from thewestern Svalbard shelf indicate a decrease
in glacial erosion and increase in ice streaming beginning ∼1Myr
ago (ref. 24). Collectively, there is evidence from both summits and
fjord valleys in northwestern Svalbard for increasing protection of
alpine landscapes in the middle-to-late Quaternary.

Although basal ice conditions, topography and bedrock geology
are variables that influence glacial erosion, basal thermal regime is
the most critical23. We propose that the ice occupying the summits
of northwestern Svalbard became predominantly cold-based, and
minimally erosive, as the Quaternary ice age progressed (Fig. 4),
possibly accompanied by increased ice streaming and ice sheet
drawdown. We infer that northwestern Svalbard transitioned from
a glacier-erosion state with relief generation due to warm-based
glacier incision of the valleys under relatively mild glacial maxima
temperatures, to a state of glacier armour with more extensive
occupation by polythermal and cold-based, protective ice in the
middle and late Quaternary during much colder glacial maxima
temperatures, where only the central axes of valleys continued
to be carved by warm-based portions of ice sheets (Fig. 4).
Relief generation may have been further inhibited owing to a
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Figure 2 | Sample locations and northwestern Svalbard landscape. a, Sample locations (green circles); map location shown in Fig. 1, with the location of
the topographic profile (A–B) used in Fig. 4. b, Photograph illustrating alpine topography of northwestern Svalbard with four of the sampled mountains.
Abbreviations as in Fig. 1.
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Figure 3 | Plot of 26A/10Be ratios. Plot of 26A/10Be ratios from Europe and
Greenland compared to our results from northwest Svalbard (black circles).
References given in Supplementary Information. 10Be concentrations are
normalized to sea level. Samples plotting below the steady state curve
contain inheritance; dashed lines are burial isochrones with corresponding
burial durations.

transition to a permafrost regime with a thin to non-existent active
layer that protected summits (when exposed) against erosion25.
In any case, the alpine topography of northwestern Svalbard, and
perhaps elsewhere in the Arctic, was evolving under glacial erosion
conditions before 0.9–1.6Myr ago. The transition coincides with
the mid-Pleistocene transition from 41 to 100 kyr glacier cycles26.
This conceptual model for landscape development may apply to
landscape evolution throughout the polar regions on Earth.

Our results provide a point of view different than that developed
from studies ofmountain regions at lower latitudes, such as from the
European Alps, where the present morphology is considered to be
strongly influenced bymiddle and lateQuaternary glaciations2. This
is in contrast to northwestern Svalbard, where the alpine landscape
seems to have been preserved through the same period.

We propose that as high-latitude alpine glaciation and climate
evolved, erosion became confined to ice stream locations, andmuch
of the landscape (even steep alpine summits and some valley bottom
locations) became protected from erosion by an armour of non-
erosive ice (Fig. 4). We argue that the importance of glaciers as
an armouring agent versus being efficient eroding agents in polar
alpine landscapes varies through both time and space, depending
on glacier regime, and that even steep alpine landscapes, such as on
Svalbard, can be protected. The development of large ice sheets after
the mid-Pleistocene transition could have played a role in a regime
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Figure 4 | Conceptual model of transition to glacial armouring. a, Fluctuations in global benthic δ18O for the past 5 Myr (ref. 25). b–e, Profile from Fig. 2a
with two di�erent glacier scenarios throughout the Pleistocene. Changes from 41 kyr towards 100 kyr glacier cycles (mid-Pleistocene transition; red line
in a) represent changes in environment from warm-bedded, thin active ice resulting in alpine landscape carving under conditions of relatively mild glacial
maxima (b and c), to thicker and cold-bedded phases with protective armouring ice under condition of colder glacier maxima (d and e). The stippled blue
line in c and e indicate the glacier surface, whereas the black lines indicate lowering of the topography.
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shift of Arctic glaciers from one of erosion to one of protection,
which may have played a significant role in landscape evolution at
the poles.

Methods
Methods and any associated references are available in the online
version of the paper.
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Methods
Samples for cosmogenic 26Al and 10Be analysis were collected from bedrock surfaces
on the summits of some of the highest peaks in northwestern Svalbard. Samples
were collected from windswept locations in spring (the time of maximum seasonal
snow cover) to ensure that sample sites remained snow-free year round. Elevation,
latitude and longitude data were gathered with a handheld global positioning
system (GPS). Topographic shielding was measured using an inclinometer and
calculated using the scaling factors given in Dunne and colleagues37. For validation
we compared the correction factor to the correction factor gained from an
automatic generated technique described by Codilean38, using a digital elevation
model in ArcMap. Samples were not corrected for isostatic rebound because the
amplitude of change during the past million years has been low6. Samples were
processed at the Institute of Geological Sciences, University of Bern for the
accelerator mass spectrometry (AMS) measurements of 10Be/9Be and 26Al/27Al at
the ETH/PSI tandem facility in Zürich. 10Be and 26Al ages were calculated using the
CRONUS online exposure age calculator4 using the 10Be production rate from

Northern Norway39 (see Supplementary Information for details). Minimum burial
and exposure ages and maximum erosion rates were calculated from our 10Be and
26Al concentrations using the Excel add-in CosmoCalc40.
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