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ABSTRACT: The outline and trend of 6566 subglacial bedforms in the New York Drumlin Field have been digitized from digital
elevation data. A spatial predictive model has been used to extend values of bedform elongation over an area measuring
200 km × 110 km. The resulting surface is used in conjunction with depth-to-bedrock data and an assumed duration of ice
residence to test three proposed controls on bedform elongation. Upon comparison, the resulting display of morphometry is best
explained by differences in ice velocity across the field of study. The existence of multiple zones of fast-moving ice located along
the southern margin of the Laurentide Ice Sheet is implied by the observed patterns of bedform elongation and orientation. We
present two interpretations that are consistent with the observations. First, enhanced basal sliding caused by decreasing effective
pressure near a calving margin is suggested as a possible mechanism by which localized fast ice flow is initiated and maintained.
Second, topographically controlled ice streams likely occupied the fjord-like troughs of the Appalachian Upland northern rim.
Contrary to previous understanding of the Laurentide southern margin in New York State, the resulting palaeoglaciological
reconstruction illustrates a dynamic mosaic of ice stream and/or outlet glacier activity. Copyright © 2009 John Wiley & Sons, Ltd.
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Introduction

The use of satellite imagery and digital elevation data to
reconstruct former ice sheet dynamics from geomorphologic
evidence has become more common over the past decade
(Knight, 1997; Clark, 1997; Smith and Clark, 2005; Wellner
et al., 2006; Briner, 2007; Napieralski, 2007). In particular,
reconstructing the location of former ice streams has received
increased attention due to their role in ice sheet response
to climate change (Oppenheimer, 1998; Bennett, 2003; Rignot
and Kanagaratnam, 2006). The prediction of future ice sheet
behaviour will only result from improvements in numerical
ice sheet modelling, remote sensing techniques and platforms,
understanding of subglacial processes, and palaeoglacio-
logical reconstructions (Vaughan et al., 2007). Studies that
utilize a glaciological inversion scheme, i.e. deciphering
ice sheet dynamics by investigating the landform record (De
Angelis and Kleman, 2007), are a critical component of this
synergistic undertaking.

The southern lobes of the Laurentide Ice Sheet (LIS) that
flowed over New York State have been interpreted to be
dynamic outlets that transported large quantities of ice and
sediment from the ice sheet interior to periphery (Jennings,
2006). The Ontario Lobe was a sector of the LIS that crossed

the Lake Ontario basin (Figure 1) and influenced the landscape
of western and central New York State (Mickelson et al., 1983).
Several studies have characterized ice flow within the Ontario
Lobe as radial spreading from a dome located in the Lake
Ontario basin (e.g. Ridky and Bindschadler, 1990; Hart 1999).
This observation has been based on the orientation of bedforms
in the New York Drumlin Field located south of Lake Ontario.

A growing body of literature supports the idea that subglacial
bedforms serve as palaeoflow indicators and provide crucial
information regarding ice sheet behaviour (e.g. Clark, 1994;
Hart, 1999; Stokes and Clark, 2002, Sejrup et al., 2003). The
drumlins and megaflutes that compose the New York Drumlin
Field (generally referred to as subglacial bedforms in this study)
display considerable variation in size, shape, and orientation.
The processes responsible for the formation of these bedforms
have remained elusive over decades of active research (Menzies,
1987; Boyce and Eyles, 1991; Shaw, 2002). Similar to the
lack of consensus regarding formation processes of subglacial
bedforms, the factors that control their morphometry remain
enigmatic. Several studies have identified the velocity of
overriding ice as the primary control on bedform elongation
(Chorley, 1959; Miller, 1972; Stokes and Clark, 2002; Briner,
2007). Other studies have concluded that the time available
for bedform creation and modification along with constancy
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in ice flow direction are critical to determining the resulting
shape (Gravenor, 1953; Mills, 1980; Boyce and Eyles, 1991).
In addition, recent work hypothesized that the thickness of
unconsolidated sediments upon which bedforms reside is the
primary control on their morphometry (Kerr and Eyles, 2007).
The fundamental contribution of this paper is a geospatial
comparison of these controls in the New York Drumlin Field.
Unlike several previous studies in the region that focused on
subsets of the field (e.g. Stahman, 1992; Briner, 2007), more
than 6500 features have been investigated in this paper
providing a comprehensive view of the late-Wisconsin
Laurentide southern margin in central New York State.

Setting

New York State is composed of multiple provinces of
dissimilar physiography that illustrate the varying influence
of the LIS on the region (Figure 1). This study is focused in an

area where the Erie-Ontario Lowland forms a transition to the
Appalachian Upland in central and western New York State.
The topography in this region is developed on primarily
undeformed strata of Ordovician and Devonian age (Isachsen
et al., 2000). The Erie-Ontario Lowland resides on
sedimentary bedrock that is susceptible to erosion and, as
such, is relatively flat and low in elevation. As an exception,
the resistant Niagara and Onondaga Escarpments, residing in
the Erie-Ontario Lowland, are exposures of their respective
southward-dipping formations. The northern rim of the
Appalachian Upland is characterized by a mature fluvial
architecture and several valleys that have been incised over
multiple glaciations.

The LIS covered New York State during the last glacial
maximum except for a small area near the southwest corner
of the state (called the Salamanca Re-entrant) and the southern
coast of Long Island (e.g. Cadwell and Muller, 2004). A number
of end moraines (Figure 2) and ice-marginal lakes formed as
the LIS retreated from central New York State (Fairchild, 1909;

Figure 1. a) Hillside map showing physiographic provinces of New York State (Isachsen et al., 2000). Outline of New York Drumlin Field indicated by
bold rectangle. b) Elevation map showing the topography of the area. Approximate palaeoshoreline of Lake Newberry indicated by white dashed
line. This figure is available in colour online at www.interscience.wiley.com/journal/espl
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Muller and Prest, 1985; Muller and Cadwell, 1986; Young
and Burr, 2006); however, the chronology of LIS recession in
central New York State is only broadly known (Muller and
Calkin, 1993). Retreat from the Valley Heads Moraine, a
complex of kame moraine features south of the Finger Lakes
(Figure 2), began by 17·3 kyr BP (Muller and Calkin, 1993).
Glacial Lake Iroquois, a high stand of present-day Lake Ontario,
formed by 14·2 kyr BP when the LIS withdrew from central
New York State but still blocked the St Lawrence River to the
east (Muller and Prest, 1985).

Background

Previous studies of the New York Drumlin Field can be
divided into two categories: studies of bedform shape, size,
and distribution (morphometric), and investigations of internal
sediment structure (stratigraphic). The first reference to New
York drumlins in the literature dates to the mid-nineteenth
century where the drumlin field is described as ‘parallel
ridges with a north–south orientation’ (Hall, 1843). The early
work of H. L. Fairchild (1907) laid the foundation for several
descriptions of bedform pattern and shape (Slater, 1929;
Miller, 1972; Francek, 1991). More recently, morphometric
investigations within the New York Drumlin Field have been
used as evidence for fast ice flow (Briner, 2007) and a
systematic relationship between bedform shape and sediment
thickness (Kerr and Eyles, 2007). Several studies have described
the internal structure of drumlins where exposed at the
southern shore of Lake Ontario with numerous observations
of ‘concentric banding’ within the landform interior (Fairchild,
1929; Slater, 1929; Calkin and Muller, 1992; Hart, 1997). Till
fabric analyses have been primarily limited to exposures along
the Lake Ontario shoreline. The bulk of these studies imply
drumlin formation via deformation of subglacial sediment
(e.g. Dreger, 1994; Hart, 1997; Menzies et al., 1997).

Methodology

Bedform elongation and orientation

Digital elevation data for the region were obtained from the
United States Geological Survey National Elevation Dataset
(USGS NED). The NED data for New York State were produced
by the USGS via interpolation of digitized contours using a
complex linear routine. Using 7·5 minute USGS topographic
maps as a guide, the bounding break in slope for each of
the 6566 bedforms was manually digitized from the digital
elevation data in Environmental Systems Research Institute
(ESRI) ArcGIS 9·2 using the editor utility. The length, width, and
orientation of each bedform were measured and recorded in
a geodatabase. Bedform elongation was determined by dividing
length by width. An ordinary kriging technique was applied
to the elongation data using a spherical semivariance model
over a search area of 30 neighbours via the Geostatistical
Analyst utility in ArcGIS. The resulting prediction surface was
draped over the digital elevation data to illustrate the spatial
distribution of bedform elongation (Figure 3).

Depth to bedrock

Three subregions (each characterized by a dense population
of bedforms) were defined within the study area (Figure 2).
The depth to bedrock at 434 wells was extracted from river
basin planning reports covering each of the subregions.
Subregion 1 resides within the Genesee River basin (Kammerer
and Hobba, 1967), whereas Subregions 2 and 3 lie within the
western (Kantrowitz, 1970) and eastern (Crain, 1974) Oswego
River basins, respectively. For Subregions 1, 2, and 3 an
ordinary kriging technique was applied to 61, 248, and 120
wells, respectively, using a spherical semivariance model to
establish an isopach map of sediment thickness (Figure 4).

Figure 2. Hillside image showing New York Drumlin Field. Shaded polygons indicate moraines extracted from New York surficial geology data
(Muller and Cadwell, 1986). This figure is available in colour online at www.interscience.wiley.com/journal/espl
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The number of neighbours used in each searching method was
determined by using the value corresponding to the average
standard error to root-mean-squared prediction error ratio
closest to one.

Comparing elongation and depth to bedrock

Each isopach map was converted to raster format and a point
was generated at the centroid of each polygon outlining the
digitized bedforms. This reduced the polygon-shapefile to a
point-shapefile that represented the collective attributes of the
drumlin field. This point-shapefile was converted to raster
format using the Point to Raster conversion utility included
with the ESRI ArcToolbox with a value of one wherever a
bedform was located and NODATA elsewhere. The ESRI
Raster Calculator was used to multiply depth to bedrock by
drumlin location thereby giving an output raster file with a

cell value of depth to bedrock wherever a bedform was located,
and NODATA everywhere else. This raster was converted to
a point shapefile using the ESRI Raster to Point conversion
utility. A spatial join was performed between the resulting
point-shapefile and the original polygon-shapefile, thereby
adding the corresponding depth to bedrock as an attribute to
each digitized feature. Finally, the data were plotted on a
bivariate scatterplot and a Pearson correlation coefficient was
generated for each subregion.

Results

Bedform elongation

The minimum bedform elongation (1·01) was observed in the
north-central portion of Subregion 2 and the maximum (71·58)
near the southeast portion of Subregion 2 (Figure 3). The

Figure 4. Prediction surfaces of depth to bedrock for three subregions. Bivariate scatter plots illustrate comparison of depth to bedrock beneath
individual subglacial bedforms in each subregion (quantity = n) to associated elongation. Well locations are shown as points on each prediction
surface. This figure is available in colour online at www.interscience.wiley.com/journal/espl
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majority of bedforms in the New York drumlin field classify as
drumlins, although many can be defined as megaflutes (Benn
and Evans, 1998). The most significant clusters of attenuated
features are located north of Cayuga Lake in the lower-right
portion of Subregion 2 and west of Oneida Lake in Subregion
3. Features with the lowest values of elongation are clustered
near the shore of Lake Ontario, along the high ground north
of Oneida Lake in Subregion 3, and to the west of Subregion 1.

The distribution of bedform elongation was spread among
10 classes about a mean elongation of 4·81. The standardized
mean prediction error of 0·0004 indicates a prediction surface
that is strongly developed upon measured values. The root-
mean-square standardized prediction error of 1·07 indicates a

slight underestimation in prediction surface variability; however,
the results are sufficient for performing landscape-scale
comparisons.

Bedform orientation

Each of the three subregions displays a unique pattern of
bedform orientation (Figure 5). Those in Subregion 1 primarily
display a southwest trend, although bedforms that are aligned
north–south can be found in the southern portion of the area.
The bedforms in Subregion 2 show the most consistent
frequency of orientation with the vast majority of features

Figure 5. Bedform orientation (a, b, c) and orientation frequency (d, e, f) for 3 subregions.
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aligned north–south. The distribution of orientation for those
in Subregion 3 is bimodal with a strong southeast trend
toward Oneida Lake and a scattered distribution of north–
south oriented bedforms to the south. The zone of transition
in bedform orientation from Subregion 1 to Subregion 2 displays
drumlins oriented to the southeast with several features
showing survival or significant modification from a north–
south trend (Figure 6). The transition from north–south
oriented bedforms in Subregion 2 to southeast in Subregion
3 is distinct.

Depth to bedrock

Depth to bedrock in Subregion 1 (Figure 4) varies from less
than 1 m to more than 150 m with the thickest drift located
near the eastern edge of the area. Development of the isopach
surface for Subregion 1 utilized the fewest number of wells
(n = 61). Correspondingly, the standardized mean prediction
error (0·0836) and root-mean-square standardized error (1·56)
are suggestive of a surface that is limited in its development
from point values. This is further implied by concentric rings
displayed in the eastern portion of the Subregion 1 isopach
surface (Figure 4). In contrast, the distribution and density
of point data for Subregions 2 and 3 are robust and yield
standardized mean prediction errors of –0·0061 and –0·0018,
respectively, with corresponding root-mean-square values of
0·94 and 1·19. A much smaller range in depth to bedrock is
displayed in Subregion 2 with a maximum depth of 43 m
occurring north of Seneca Lake. Depth to bedrock varies from
less than 1 m to more than 56 m for Subregion 3. Each
bivariate scatterplot illustrates a lack of correlation between
depth to bedrock and bedform elongation (Figure 4). Corre-
sponding Pearson correlation coefficients (r) for Subregions 1,
2, and 3 are 0·0142, 0·0233, and –0·1574, respectively.

Discussion

Controls on bedform morphometry

Multiple explanations have been proposed for the diverse
pattern of bedform elongation observed in the New York
Drumlin Field. The controls explored by this study can be
classified into three groups: the thickness of sediment cover
upon which the bedforms reside, the time available for the
creation of subglacial bedforms, and the velocity of ice
responsible for their formation. Sediment rheology, another
potentially important factor (Piotrowski, 1987; Rattas and
Piotrowski, 2003), is not investigated here due to a lack of
representative data over the large area of study. Moreover,
exposures that provide a view of subglacial bedform internal
composition and structure are rare in the New York Drumlin
Field. Maps of surficial geology are available for the area;
however, their representation is limited to the near surface
and does not reveal the internal characteristics of individual
bedforms. Within the region explored by this paper, a previous
study focused on the drumlins and megaflutes located north
of Cayuga Lake (Stahman, 1992). The results of the project
show little correlation between internal composition (till texture)
and elongation in a zone where drumlins and megaflutes
reside within close proximity.

Depth to bedrock

The well log data reveal a complex underlying topography with
several features that are supported by independently-derived
observations. Although additional data for Subregion 1 were
not available to improve model performance, thick glacial
drift near the eastern edge (Figure 4) (maximum 153 m) is
suggestive of a buried valley. Indeed, this area is aligned
with the Genesee Valley, a sediment-infilled bedrock trough
similar in geometry to the Finger Lake valleys to the east
(Young and Sirkin, 1994). Secondly, a relatively linear west–
east trending group of relatively shallow depth to bedrock
measurements in Subregion 2 coincides with the Onondaga
Escarpment. Thirdly, depth to bedrock for the area located
north of Seneca Lake in Subregion 2 is consistent with values
obtained by seismic reflection for the area (Mullins et al.,
1996). These similarities among the interpolated isopach surfaces
and ground-truth observations provide confidence in the isopach
maps. We find little correlation between depth to bedrock
and bedform elongation. The low Pearson correlation coefficient
(r) shown in each bivariate scatterplot (Figure 4) indicates little
systematic dependence of elongation on depth to bedrock.

Time available for bedform attenuation

The long-axis trend of subglacial bedforms records ice flow
direction during the time of their formation. The New York
Drumlin Field displays southwest oriented bedforms in the
west (Subregion 1), north–south in the centre (Subregion 2),
and southeast in the east (Subregion 3) (Figure 5). The zone
of transition from southwest trending features in Subregion 1
to north–south in Subregion 2 is highly suggestive of redirec-
tion by subsequent ice flow (Figure 6). We do not suggest
contemporaneous bedform genesis among the subregions
due to this imprint of discontinuous ice flow direction (Clark,
1993). The dominant north–south direction displayed in
Subregion 2 suggests similar ice flow direction during bedform
formation. Given the relatively small size of Subregion 2 in
comparison to the overall Ontario Lobe, the duration of ice

Figure 6. Hillshade image of suture zone between southwest
trending bedforms in the west and north-south bedforms in central
New York. This figure is available in colour online at
www.interscience.wiley.com/journal/espl
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residence can be considered spatially homogenous along an
east–west transect. Therefore, the time available for landscape
modification was similar across the subregion yet significant
differences in bedform elongation are present (maximum 71·58
to minimum 1·01). In addition, elongation increases down
flowline for Subregions 2 and 3, not up-flowline (Figure 3).
These observations cannot be explained by variation in the
amount of time available for landscape modification.

Ice velocity

Of the three controls on bedform elongation tested, the
observations noted in this paper are best explained by
differences in ice velocity across the field of study. Using
elongation as a proxy measure of velocity, the prediction surface
of bedform elongation demarcates two zones of fast ice flow
(Figure 3). In Subregion 3, megaflutes located west of Oneida
Lake are characterized by bedform elongation ratios up to 47:1.
The Adirondack Highland (Figure 1) was exposed as a nunatak
during deglaciation promoting divergent flow southward
out of Canada to the east of the Adirondack Highland and
southeastward from the Erie-Ontario Lowland (Krall, 1977).
Ice flowing from the lowland into the Oneida Lake basin
(hereafter referred to as the Oneida Sublobe) created the
bedforms located west of Oneida Lake. Very elongate megaflutes
(maximum 72:1) are also located north of Cayuga Lake
(southeast corner of Subregion 2; Figure 3). The highest
concentration of elongate features is located immediately
north of Cayuga Lake, but we cannot discount the possibility
that bedforms of similar morphometry existed north of Seneca
Lake and have since been removed by channelized meltwater
or ice-marginal lake swash zone erosion.

We suggest two interpretations that are consistent with the
observations. Recent geophysical work on the Rutford Ice
Stream has shown that drumlins can evolve over sub-decadal
time scales (Smith et al., 2007). Therefore, the elongation
displayed in the now-exposed drumlin field may be repres-
entative of the palaeoglaciological conditions present at
the LIS bed immediately prior to deglaciation. In this case,
ice-marginal lakes may have played a role in the initiation
and maintenance of fast ice flow. In contrast, other studies of
the New York Drumlin Field suggest that drumlin morpho-
metry reflects LIS dynamics during the Valley Heads stage
when the terminus was south of the Finger Lakes (Francek,
1991; Ridky and Bindschadler, 1990). Under these conditions,
the observed drumlin morphometry may reflect flow within
topographically-controlled ice streams that populated the
fjord-like troughs along the northern rim of the Appalachian
Upland.

Ice acceleration toward a calving margin
Fairchild (1909) outlined a series of palaeoshorelines that
illustrate a time-transgressive sequence of pro-glacial lake
stages in central New York State. A large lake covered the
interfluve between Seneca and Cayuga Lakes during the Lake
Newberry Stage (Figure 1). The modern depth of Cayuga
Lake (128 m) is second only to that of Seneca Lake (188 m)
(Von Engeln, 1961). Total depth to bedrock beneath Cayuga
and Seneca Lake sediments is 366 and 439 m, respectively
(Mullins and Hinchey, 1989). Seneca and Cayuga Lakes
collectively reside in a relatively deep trough (hereafter referred
to as the Seneca-Cayuga trough) surrounded by the high ground
of the Appalachian Upland (Figure 1). A deep lake of significant
volume was created within the trough as the Valley Heads
Moraine prevented the escape of meltwater to the south. To
the east of Oneida Lake, lacustrine beach deposits mark the

outline of a significant ice-marginal lake residing in the Oneida
basin (Fairchild, 1909; Muller and Cadwell, 1986). Again,
Oneida Lake is located between the Tug Hill Upland to the
north and the Appalachian Upland to the south (Figure 1).
Thus, both the Oneida basin and the Seneca-Cayuga trough
held significant pro-glacial lakes during deglaciation.

Modern observations of calving glaciers typically show an
increase in surface velocity toward their terminus (Krimmel,
1992; Abdalati and Krabill, 1999; Lefauconnier et al., 2000).
Longitudinally decreasing effective pressure resulting from
buoyant forces induced by ice-marginal water has been
observed at Columbia Glacier (O’Neel et al., 2005). Moreover,
basal drag decreases toward the margin in response to
decreasing effective pressure and reaches zero when the ice
is fully supported by water pressure (Benn et al., 2007). The
increase in surface velocity observed as ice approaches the
terminus of a calving glacier is partly an expression of enhanced
basal sliding and, therefore, should be present in the landform
record.

Increasing elongation down flowline is observed in Subregions
2 and 3. We propose that this pattern reflects a localized
increase in basal sliding velocity during deglaciation. In
Subregion 2, the most elongate bedforms are proximal to a
deep region of Lake Newberry; now the basin within which
Seneca and Cayuga Lakes reside. In response to different lake
stages, one would expect different regions of elongate bedforms
generated by a calving margin of varying width. Indeed,
megaflutes are found to the west of Seneca Lake and may
represent calving into a lake residing at higher modern elevation.
In Subregion 3, the observed distribution in bedform orientation
(Figure 5c) may represent the path of a topographically-
controlled outlet glacier or ice stream flowing into the Oneida
basin. Again, the pattern of increasing elongation down flowline
is suggestive of calving into an ice-marginal lake. Meltwater
freely drained from Subregion 1 and a significant ice-marginal
lake was not created. In support of the calving margin
interpretation, highly attenuated bedforms are not found in
Subregion 1.

Topographically controlled ice streams
During the Last Glacial Maximum, ice moved southward in
Central New York State onto the Appalachian Upland and
eventually reached the Wisconsinan limit in Pennsylvania
(Figure 1). Flow from north to south across the Erie-Ontario
Lowland was restricted by the Appalachian Upland. The northern
rim of the transition to higher elevation has been significantly
dissected thereby generating preferential pathways for flowing
ice. The surface gradient of the LIS during retreat was quite
low along the southern margin due to the abundance of
deformable bed material (Mickelson and Colgan, 2003).
The interaction of a low-gradient ice surface and climbing
topography of the Appalachian Upland surely resulted in
strong glaciodynamic sensitivity to underlying topography
(e.g. Kessler et al., 2008). In previous work, a numerical
flowline model yielded evidence of outlet glaciers residing in
the Finger Lake troughs upon LIS occupation of the landscape
(Ridky and Bindschadler, 1990). The study determined that
the flux of ice transported by these glaciers generated zones
of fast-moving ice projecting into the interior of the ice sheet.
Our results show a significant clustering of elongate bedforms
located proximal to the deeply incised Cayuga Lake trough.
These results agree well with a previous study of the megaflutes
located north of Cayuga Lake that found a strong correlation
between bedform elongation and modern ice stream velocity
(Hart, 1999). In Subregion 3, Oneida Lake resides within a
trough between the Appalachian and Tug Hill Uplands.
Bedforms located proximal to Oneida Lake are highly elongate
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(Figure 3) and their orientation is descriptive of streaming ice
directed into the modern Oneida Lake basin. A zone of fast
ice flow within the Oneida Sublobe was identified by a recent
study (Briner, 2007). Using morphometric data, the study
outlined a discrete transition to highly elongate megaflutes from
bounding, ovoid drumlins and illustrated a pattern of increasing
elongation down flowline. The results shown here, derived
independently from those of Briner (2007), express similar
findings. Flow of relatively fast-moving ice is represented by
the sharp discontinuity in bedform orientation shown in
Subregion 3 (Figure 5c). The results are suggestive of fast ice flow
within the Oneida Sublobe as it flowed into the Oneida basin.

Conclusions

In this study we generated continuous prediction surfaces
via kriging analyses to compare spatially non-coincident point
measurements of bedform elongation and drift thickness.
Caution must be exercised, however, when performing such
predictions. A combination of validation statistics and comparison
to independent data confirmed our interpolations. Through
implementation of this technique we have determined that
ice velocity played a key role in determining the morphometry
of subglacial bedforms in the New York Drumlin Field. We
conclude that drift thickness did not significantly influence
bedform elongation in the region.

Our results supplement the growing body of literature that
utilizes a glaciological inversion scheme in an attempt to
better understand ice sheet dynamics. Previous studies in the
area describe a radial pattern of bedform orientation in the
New York Drumlin Field reflecting flow from a central dome.
In contrast, we present three distinct zones of ice flow with
vastly differing reconstructed flow trends. Multiple zones of
fast ice flow are developed, however the timing of bedform
formation is unclear due to a lack of suitable chronological
control on ice sheet withdrawal from the area. We propose
two mechanisms that may have promoted the localized fast
ice flow defined in this study. Topographic funnelling likely
directed ice into the broad Seneca-Cayuga trough and Oneida
basin during the Valley Heads stage thereby increasing ice
flux through each zone. During deglaciation, ice-marginal
water may have influenced the longitudinal velocity gradient
north of the Seneca-Cayuga trough and west of the Oneida
basin. These processes, each of which are supported by our
observations, are limited in definition by the lack of
chronological control on subglacial bedform genesis in the
New York Drumlin Field.
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