Assessing climatic and nonclimatic forcing of Pinedale glaciation and deglaciation in the western United States

Nicolás E. Young¹, Jason P. Briner¹, Eric M. Leonard², Joseph M. Licciardi³, and Keenan Lee⁴

¹Department of Geological Sciences, University at Buffalo, Buffalo, New York 14260, USA

²Geology Department, Colorado College, Colorado Springs, Colorado 80903, USA

³Department of Earth Sciences, University of New Hampshire, Durham, New Hampshire 03824, USA

⁴Department of Geology and Geological Engineering, Colorado School of Mines, Golden, Colorado 80401, USA

ABSTRACT

New ¹⁰Be surface exposure ages from adjacent valleys in the upper Arkansas River basin, Colorado (United States), indicate that Pinedale maxima culminated asynchronously at 22.4 \pm 1.4, 19.2 \pm 0.2, 17.8 \pm 0.6, and 15.8 \pm 0.4 ka, but that deglaciation initiated synchronously between ca. 16 and 15 ka. These data are combined with published glacial chronologies across the western United States, and indicate that although the ages of Pinedale terminal moraines vary within individual ranges as well as regionally, most western United States glaciers remained near their Pinedale termini until ca. 16 ka, at which time widespread deglaciation commenced. We hypothesize that the near-synchronous demise of glaciers across the western U.S. between ca. 15 and ca. 13 ka was driven by the first major Northern Hemisphere warming following the Last Glacial Maximum, but that some differences in Pinedale culmination ages can be explained by nonclimatic factors intrinsic to individual valleys. These results suggest the need for caution in focusing exclusively on climate forcings to explain apparent asynchrony in Pinedale maxima. Although some acknowledge that factors intrinsic to the individual glacier systems (e.g., hypsometry, response time) can explain different moraine ages (Licciardi and Pierce, 2008; Ward et al., 2009), most conclusions focus on climatic factors.

To test whether nonclimatic factors can influence Pinedale terminal moraine ages, we obtained cosmogenic ¹⁰Be exposure ages from glacial landforms in Clear Creek, Pine Creek, and Lake Creek valleys in the upper Arkansas River basin, Colorado (Fig. 1; Fig. DR1 in the GSA Data Repository¹). Based on these new

INTRODUCION

Past glacial cycles are recorded in mountain landscapes by moraines that define former glacier maxima. Moraines are thus important targets for dating because accurate and precise moraine chronologies are needed to elucidate spatial and temporal patterns of former glaciation. The recent development of cosmogenic nuclide exposure dating and its application to moraines has led to a substantial increase in the number of moraines dated worldwide (e.g., Gosse and Phillips, 2001; Bierman, 2007). These new moraine chronologies often reveal significant age differences among moraines deposited during a single glacial cycle, differences that commonly are used to infer spatiotemporal patterns of regional climate (e.g., Briner and Kaufman, 2008; Thackray, 2008).

Within the western United States, ages of Pinedale (and Pinedale equivalent; Marine Isotope Stage, MIS 2) terminal moraines of ca. 18 to ca. 16 ka in the northern Rocky Mountains are ~5 k.y. younger than Pinedale terminal moraines in the Wind River Range and at some locations in Colorado (Gosse et al., 1995; Licciardi et al., 2004; Thackray et al., 2004; Benson et al., 2005). This discrepancy has led to the hypothesis that westerly atmospheric flow was altered by the North American ice sheets, affecting the spatial and temporal pattern of moisture delivery to western U.S. glaciers (e.g., Licciardi et al., 2004; Thackray et al., 2004; Thackray, 2008). Another conceptual model invokes moisture provided by Great Basin paleolakes as the driver of asynchronous mountain glaciation in downwind mountain ranges (Laabs et al., 2009).

Figure 1. A: Distribution of Pinedale glaciers in western United States (gray, after Porter et al., 1983) and locations of published chronologies synthesized here. AR-Animas River valley, San Juan Mountains; MBC-Middle Boulder Creek valley, Front Range; WU-western Uinta Mountains; FL-Fremont Lake, Wind River Range; TR-Teton Range; NWY-northwest Yellowstone ice cap: WA-Wallowa Mountains; IC-Icicle Creek, northeastern Cascade Range; BC-Bishop Creek, Sierra Nevada. B: Upper Arkansas River study area showing ¹⁰Be ages with 1_o uncertainty; gray boxes are ¹⁰Be ages from previous studies (br-bedrock; mb-moraine boulder; mc-moraine clast; mb/p-moraine boulders and pebbles; tb-terrace boulder). LCV—Lake Creek valley; CCV—Clear Creek valley: PCV-Pine Creek valley. Star-Vantage point of Figure DR2 (see footnote 1).

¹GSA Data Repository item 2011072, materials and methods, Figures DR1–DR4, and Tables DR1–DR3, is available online at www.geosociety.org/pubs/ft2011.htm, or on request from editing@geosociety.org or Documents Secretary, GSA, P.O. Box 9140, Boulder, CO 80301, USA.

ages and a compilation that includes other moraine chronologies throughout the western U.S., we suggest that differences in exposure ages of Pinedale terminal moraines are not solely related to regional climatic controls, but rather may also be due to internal factors such as glacier hypsometry. Furthermore, our compilation of Pinedale recessional moraine ages indicates that deglaciation began ca. 16 ka, and that the most significant change of western U.S. glaciers since the Last Glacial Maximum is their near-synchronous demise between ca. 15 and ca. 13 ka.

UPPER ARKANSAS RIVER VALLEY

The Clear Creek, Pine Creek, and Lake Creek valleys are all east facing, and at their Pinedale maximum extent glaciers emanating from Clear Creek and Pine Creek valleys dammed the Arkansas River (Scott, 1984; Nelson and Shroba, 1998; Lee, 2010). Clear Creek and Pine Creek valleys each host a pair of sharp, singlecrested lateral moraines that are >150 m high. These moraines are easily distinguishable from more extensive Bull Lake (MIS 6) moraines that are characterized by a more subdued surface topography and higher degrees of weathering on boulder surfaces (Nelson and Shroba, 1998). Unlike Clear Creek and Pine Creek valleys, where single Pinedale moraines are preserved, the Lake Creek valley contains numerous Pinedale end moraines (Fig. 2; Nelson and Shroba, 1984). Glacier retreat from the terminal moraines in the Clear Creek and Pine Creek valleys likely led to a series of outburst floods that deposited two boulder-rich terraces downstream of Pine Creek, ~15 and 6 m above the modern-day Arkansas River (Scott, 1984; Lee, 2010; Fig. DR2). The geomorphic relationship between Pinedale terminal moraines and flood terraces indicates that moraine abandonment

Figure 2. All ¹⁰Be ages from upper Arkansas River study area (error bars are 1σ uncertainty); curves show summed probability distribution of all Pine Creek and Clear Creek moraine ages, and of all upper and lower flood terrace ages. Larger symbols at bottom of upper panel are average ages of each terrace and moraine mode, interpreted as four glacier maxima achieved by study glaciers. Positions of ¹⁰Be from glacially ages sculpted bedrock from three valleys are normalized with respect to Pinedale or Pinedaleand terrace deposition were synchronous. Our data set includes 19 new ¹⁰Be ages from (1) moraine boulders (n = 5), (2) boulders from the two aforementioned flood terraces related to the dated moraines (n = 8), and (3) glacially sculpted bedrock upvalley from Pinedale end moraines (n = 6); we combine these new ¹⁰Be ages with 12 previously published moraine clast ¹⁰Be ages from the same area (Briner, 2009; Fig. DR1).

The 10Be ages of boulders from the outer Clear Creek lateral moraine range from 21.7 ± 0.6 to 15.2 ± 0.4 ka (n = 5; Tables DR1 and DR2); three of these ages are between 19.5 and 19.1 ka (mean = 19.3 ± 0.2 ka). A sample collected from glacially sculpted bedrock ~9 km upvalley from the terminal moraine is 14.1 ± 0.3 ka. Samples (n = 12) previously collected from the outermost, single-crested right-lateral moraine in the Pine Creek valley range from 24.5 ± 0.7 ka to 13.5±0.4 ka (Briner, 2009). However, these ¹⁰Be ages are distributed in two distinct modes that average 22.4 ± 1.4 ka (n = 5) and 15.8 ± 0.4 ka (n = 6; Table DR1), after excluding one younger outlier (13.5 ± 0.4) . We suspect that this younger outlier is likely the result of boulder exhumation. Ages of two adjacent samples from glacially sculpted bedrock located ~4 km upvalley from the Pine Creek terminal moraine are 15.6 ± 0.4 ka and 15.3 ± 0.3 ka. The only age control for Pinedale moraines in the Lake Creek valley comes from a single ¹⁰Be age of 19.7 ± 0.5 ka on a terminal moraine boulder (Schildgen, 2000). We obtained 10 Be ages of 14.7 ± 0.4 ka, 13.9 ± 0.4 ka, and 13.2 ± 0.4 ka from glacially sculpted bedrock at ~10, ~16, and ~25 km upvalley, respectively, of the terminal moraine in Lake Creek valley. Of ¹⁰Be ages from boulders on the higher of the two flood terraces, four range between 20.9 ± 1.0 ka and 19.1 ± 0.6 ka; three of these samples cluster at 19.2 \pm 0.1 ka. Moreover, four ¹⁰Be ages

equivalent maximum length of each respective study glacier. Abbreviations as in Figure 1.

from boulders on the lower terrace range from 18.4 ± 0.4 ka to 17.2 ± 0.8 ka (mean age of 17.8 ± 0.6 ka; Fig. 2).

The ¹⁰Be age distribution of the Clear Creek moraine is complex and warrants further discussion. While the oldest ¹⁰Be age (21.7 \pm 0.6 ka) overlaps the ca. 19.3 ka cluster at 2σ , we suggest that the ca. 19.3 ka mode is most representative of the timing of moraine abandonment because (1) three of four ¹⁰Be ages on the upper flood terrace are between 19.3 and 19.1 ka (mean = 19.2 ± 0.1 ka; Fig. 2), and (2) the mouth of Clear Creek valley was likely the main damming point of the Arkansas River (Lee, 2010). These data confirm that moraine abandonment in Clear Creek and deposition of the upper flood terrace were contemporaneous. In addition, two ¹⁰Be ages excluded from the Clear Creek age assignment $(21.7 \pm 0.6 \text{ ka} \text{ and } 15.2 \pm 0.4 \text{ ka})$ overlap the older and younger modes found in the Pine Creek ¹⁰Be age distribution (Fig. 2). It is possible that these ages represent additional Pinedale advances in Clear Creek valley that culminated synchronously with advances in Pine Creek valley; however, the insufficient number of samples from the Clear Creek moraine prevents us from reaching this conclusion with confidence. The ¹⁰Be ages on the lower flood terrace (n = 4) have a mean age of 17.8 ± 0.6 ka.

Not all modes of Pinedale maxima are expressed in each valley. The oldest Pinedale ice limit is apparently preserved in the Pine Creek valley (22.4 \pm 1.4 ka) and ¹⁰Be ages from Clear Creek valley suggest that ice initially retreated from its Pinedale maximum extent at 19.3 ± 0.2 ka. This age correlates with the age of the upper flood terrace $(19.2 \pm 0.1 \text{ ka})$, implying that the Clear Creek glacier acted as the main ice dam. 10Be ages also indicate that following the Pinedale maximum extent, culminating ca. 22.4 ka in the Pine Creek valley, ice reoccupied the same moraine until 15.8 ± 0.4 ka (Briner, 2009). This is supported by ages of 15.6 ± 0.4 ka and 15.3 ± 0.3 ka from glacially sculpted bedrock upvalley of the moraine, ages that constrain timing of deglaciation in the lower Pine Creek valley. In the Lake Creek valley, the Pindale terminal moraine is dated as 19.7 \pm 0.5 ka based on a single ¹⁰Be age (Schildgen, 2000); our bedrock age closest to the Pinedale moraines suggests that the Lake Creek glacier was at least ~65% of its Pinedale maximum length until 14.7 ± 0.4 ka (Fig. 2; Table DR3). It is interesting that the age of the lower terrace $(17.8 \pm 0.6 \text{ ka})$ is not expressed in the moraine records. Nonetheless, deposition of the lower flood terrace requires that glaciers were at or near their Pinedale maxima in order to dam the Arkansas River (Figs. 1 and 2). Based on the close correlation between Clear Creek moraine abandonment and upper flood terrace ages, we hypothesize that the Clear Creek valley glacier was near its Pinedale maximum ca. 17.8 ka. Following a near Pinedale maximum ca. 17.8 ka, the Clear Creek glacier was at least ~65% of its Pinedale maximum length until 14.1 \pm 0.3 ka, based on our bedrock sample located ~9 km upvalley (Fig. 2; Table DR3). Combined, all ¹⁰Be ages from the upper Arkansas River valley indicate that Pinedale glacier culminations occurred at 22.4 \pm 1.4 (Pine Creek glacier), 19.3 \pm 0.2 (Clear and Lake Creek glaciers), 17.8 \pm 0.6 ka (Clear Creek glacier), and 15.8 \pm 0.4 ka (Pine Creek glacier; Fig. 2).

It is notable that the outermost Pinedale moraines within our neighboring study valleys yield considerably different mean exposure ages. We suggest that these age differences are due to a variety of internal nonclimatic factors unique to each glacier system, as it is difficult to envision substantial differences in climatic forcing across such a small area. Although glacier fluctuations are ultimately driven by climate, the expression of these fluctuations on landscapes is modulated by other factors, including lag time, valley gradient, and glacier hypsometry. In many cases lower-gradient valleys offer better potential to preserve more moraines because small changes in the equilibrium line altitude (ELA) result in larger changes in glacier extent. Thus, a more comprehensive record of glaciation may be found in low-gradient valleys compared to steeper valleys, where only a single moraine might be preserved. In addition, when glaciers of varying character respond to common climate forcing, they may not necessarily deposit moraines at the same time. Consequently, a direct correspondence of moraine ages from valley to valley is not necessarily expected (Gibbons et al., 1984). For example, within the Arkansas River valley the average gradients of Pine Creek, Clear Creek, and Lake Creek valleys are 14.4%, 9.4%, and 7.6%, respectively. Moreover, hypsometric and paleo-ELA data (Fig. DR4) suggest that the Lake Creek paleoglacier, with a large area just above its Pinedale ELA and relatively less area higher in the accumulation zone, would be quite sensitive to small rises in ELA. By contrast, the Pine Creek paleoglacier, with comparatively little area immediately above the paleoELA, might have been less sensitive to initial post-Pinedale ELA rise. This dichotomy may perhaps explain the greater number of Pinedale lateral moraines observed in the Lake Creek drainage, and the persistence of essentially maximum Pinedale ice extent, from ca. 22.5 through 16 ka in the Pine Creek valley. A rigorous test of this hypothesis will require detailed mass balance modeling and is beyond the scope of this paper. In any case, whereas the Pinedale terminal moraine ages differ by as much as ~6 k.y. in the upper Arkansas River basin, indicating an

asynchrony of maximum ice stands, ¹⁰Be ages from bedrock slightly upvalley of the moraines suggest that significant deglaciation in all valleys most likely initiated relatively synchronously between 16 and 15 ka.

SUPPORT FOR NONCLIMATIC FORCING OF VARIABLE PINEDALE MORAINE AGES IN THE WESTERN U.S.

We compiled available moraine and deglaciation chronologies from elsewhere in the western United States. Only those studies that include age data for both Pinedale moraine sequences and retreat from Pinedale termini are considered, because these records are the most instructive for understanding the timing of both glacial culminations as well as deglaciation. Prior to comparing these chronologies, all ¹⁰Be ages were recalculated using the same parameters (Tables DR1 and DR2) and then plotted against the normalized glacier length of each respective glacier system (Fig. 3; Table DR3).

Within the context of available chronologies from across the western United States (U.S.) (Fig. 3), results from the upper Arkansas River basin are not unique. Rather, the variability in outermost Pinedale moraines ages from ca. 22 ka, to ca. 19.3 ka, to ca. 15.8 ka in adjacent valleys is within the range in ages of terminal moraines throughout the western U.S. (ca. 24–15 ka). However, because we expect little variability in climate forcing across the small area of the Arkansas River basin, the asynchrony observed among moraines in this basin suggests that solely invoking climate-related reasoning to explain moraine age variability should be done with caution. In addition, we suggest that noncli-

matic factors may be an important source of age differences of Pinedale terminal moraines within and among western U.S. mountain ranges. Although significant age differences between widely spaced Pinedale terminal moraines may plausibly result from spatially variable climate forcing (e.g., Licciardi et al., 2004; Laabs et al., 2009), there remains a local topographic influence that can contribute to asynchrony of glacial maxima within each individual region or range. In valleys where moraines stabilized at terminal positions relatively early (e.g., Wind River Range, ca. 24 ka; Wallowa Mountains, ca. 22 ka), ice remained at or near its maximum extent until after 17 ka, based on the location and age of recessional moraines. Ages of these recessional moraines are consistent with the ages of terminal Pinedale terminal moraines in other western U.S. mountain ranges where Pinedale terminal moraines stabilized much later (e.g., Yellowstone, ca. 16.5 ka; Uinta Mountains, ca. 16 ka). Glacier fluctuations are ultimately driven by climate change, but the exact position of a glacier terminus is filtered by nonclimatic factors intrinsic to each glacier valley system. These factors include glacier hypsometry and how glacier snouts are funneled or otherwise confined by previously deposited moraines. Although we cannot rule out the possibility that the range in Pinedale terminal moraine ages across the western U.S. is largely due to differences in climate forcing, our results in the Arkansas River basin suggest that the individuality of glaciers and their variable response to common climate forcing also can be manifested by moraines of differing age (i.e., Licciardi and Pierce, 2008; Ward et al., 2009).

Figure 3. Comparison of chronologies of Pinedale glaciation and deglaciation (see the Data Repository [see footnote 1]) from western United States (error bars are 1o uncertainty; position normalized as in Fig. 2) with Northern Hemisphere (Berger and insolation Loutre, 1991) and polar ice core records (Stuiver and Grootes, 2000; Petit et al., 1999). Thin gray bar represents onset of deglaciation defined by Schaefer et al. (2006); wide gray bar represents Bølling-Allerød period. Abbreviations as in Figure 1. GISP2-Greenland Ice Sheet Project 2.

NEAR-SYNCHRONOUS PINEDALE DEGLACIATION IN THE WESTERN U.S.

Chronologies of the last deglaciation in the western U.S. are still relatively sparse, and in many of the data sets used in our compilation, the timing of deglaciation is constrained only by the ages of the innermost dated range-front moraine and a late-glacial moraine in the headwaters. Nonetheless, our synthesis reveals that in most cases glaciers remained at or near their terminal Pinedale positions until ca. 16 ka, and that deglaciation throughout the western U.S. was largely completed within an ~2 k.y. period between ca. 15 and ca. 13 ka. Our results build on the findings of Licciardi et al. (2004), who suggested that western U.S. deglaciation beginning ca. 17 ka may have been part of a global deglaciation trend, and a subsequent analysis by Schaefer et al. (2006), who indicated that the onset of deglaciation from mid-latitude mountain glaciers in both hemispheres was near synchronous ca. 17 ka, driven by warming recorded in Antarctic ice core records. However, we note that in many of the western U.S. chronologies discussed here, glaciers remained at or very close to their Pinedale maximum positions until ca. 16 ka or later (e.g., Applegate, 2005), and when including available chronologies of deglaciation, the majority of glacier retreat occurred significantly later than ca. 17 ka in the western U.S. Furthermore, we wonder if the near-synchronous retreat was driven by the first major warming in the Northern Hemisphere following the Last Glacial Maximum, the Bølling-Allerød period, recorded in Greenland ice cores (Stuiver and Grootes, 2000). Although the Bølling-Allerød period initiated ca. 14.7 ka, slightly later than the widespread onset of deglaciation in the western U.S. between 16 and 15 ka, well-dated speleothem records from the Northern Hemisphere register Bølling-Allerød-like warming between ca. 16 and 15 ka (Genty et al., 2006). Regardless, we hypothesize that near-synchronous deglaciation of western U.S. mountain glaciers was driven by the first significant warming registered in many Northern Hemisphere climate archives that initiated ca. 16-15 ka.

ACKNOWLEDGMENTS

We thank Lena Håkansson for help in the field and laboratory, Cal Ruleman and James McCalpin for insights in the field, and Benjamin Laabs for providing sample information from the Uinta Mountains. A grant from the Colorado Scientific Society (to Young) provided partial financial support. We also thank Bob Finkel and Dylan Rood of Lawrence Livermore National Laboratory and Marc Caffee of the PRIME (Purdue Rare Isotope Measurement) Laboratory for ¹⁰Be measurements. Finally, we thank Glenn Thackray and two anonymous reviewers for insightful comments that greatly improved this manuscript.

REFERENCES CITED

- Applegate, P.J., 2005, Synchroneity of the last deglaciation in the western United States, with some observations on the glacial history of the San Juan Mountains, Colorado [M.S. thesis]: West Lafayette, Indiana, Purdue University, 194 p.
- Benson, L.V., Madole, R.F., Landis, G., and Gosse, J.C., 2005, New data for late Pleistocene Pinedale alpine glaciation from southwestern Colorado: Quaternary Science Reviews, v. 24, p. 49– 65, doi: 10.1016/j.quascirev.2004.07.018.
- Berger, A., and Loutre, M.-F., 1991, Insolation values for the climate of the last 10 million years: Quaternary Science Reviews, v. 10, p. 297– 317, doi: 10.1016/0277-3791(91)90033-Q.
- Bierman, P., 2007, Cosmogenic glacial dating, 20 years and counting: Geology, v. 35, p. 575– 576, doi: 10.1130/focus062007.1.
- Briner, J.P., 2009, Moraine pebbles and boulders yield indistinguishable ¹⁰Be ages: A case study from Colorado, USA: Quaternary Geochronology, v. 4, p. 299–305, doi: 10.1016/j.quageo.2009.02.010.
- Briner, J.P., and Kaufman, D.S., 2008, Late Pleistocene mountain glaciation in Alaska: Key chronologies: Journal of Quaternary Science, v. 23, p. 659–670, doi: 10.1002/jgs.1196.
- Genty, D., Blamart, D., Ghaleb, B., Plagnes, V., Causse, C., Bakalowicz, M., Zouari, K., Chkir, N., Hellstrom, J., Wainer, K., and Bourges, F., 2006, Timing and dynamics of the last deglaciation from European and North African δ¹³C stalagmite profiles—Comparison with Chinese and South Hemisphere stalagmites: Quaternary Science Reviews, v. 25, p. 2118–2142, doi: 10.1016/j.quascirev.2006.01.030.
- Gibbons, A.B., Megeath, J.D., and Pierce, K.L., 1984, Probability of moraine survival in a succession of glacial advances: Geology, v. 12, p. 327–330, doi: 10.1130/0091-7613(1984)12<327:POMSIA >2.0.CO;2.
- Gosse, J.C., and Phillips, F.M., 2001, Terrestrial in situ cosmogenic nuclides: Theory and application: Quaternary Science Reviews, v. 20, p. 1475– 1560, doi: 10.1016/S0277-3791(00)00171-2.
- Gosse, J.C., Klein, J., Evenson, E.B., Lawn, B., and Middleton, R., 1995, Beryllium-10 dating of the duration and retreat of the last Pinedale glacial sequence: Science, v. 268, p. 1329–1333, doi: 10.1126/science.268.5215.1329.
- Laabs, B.J.C., Refsnider, K.A., Munroe, J.S., Mickelson, D.M., Applegate, P.M., Singer, B.S., and Caffee, M.W., 2009, Latest Pleistocene glacial chronology of the Uinta Mountains: Support for moisture-driven asynchrony of the last deglaciation: Quaternary Science Reviews, v. 28, p. 1171– 1187, doi: 10.1016/j.quascirev.2008.12.012.
- Lee, K., 2010, Catastrophic outburst floods on the Arkansas River, Colorado: Mountain Geologist, v. 47, p. 35–47.
- Licciardi, J.M., and Pierce, K.L., 2008, Cosmogenic exposure-age chronologies of Pinedale and Bull Lake glaciations in greater Yellowstone and the Teton Range, USA: Quaternary Science Reviews, v. 27, p. 814–831, doi: 10.1016/j .quascirev.2007.12.005.
- Licciardi, J.M., Clark, P.U., Brook, E.J., Elmore, D., and Sharma, P., 2004, Variable responses of western U.S. glaciers during the last deglaciation: Geology, v. 32, p. 81–84, doi: 10.1130/G19868.1.
- Nelson, A.R., and Shroba, R.R., 1984, Part II: Moraine and outwash-terrace sequences and soil

development in the north graben of the upper Arkansas valley, central Colorado, *in* Nelson, A.R., et al., eds., Quaternary deposits of the Upper Arkansas River Valley, Colorado: Boulder, Colorado, American Quaternary Association, 8th Biennial Meeting, August 16–17, 1984, unpublished guide for Field Trip No.7, p. 25–50.

- Nelson, A.R., and Shroba, R.R., 1998, Soil relative dating of moraine and outwash-terrace sequences in the northern part of the Upper Arkansas River valley, central Colorado, U.S.A: Arctic and Alpine Research, v. 30, p. 349–361, doi: 10.2307/1552007.
- Petit, J.R., and 18 others, 1999, Climate and atmospheric history of the past 420,000 years from the Vostok Ice Core, Antarctica: Nature, v. 399, p. 429–436, doi: 10.1038/20859.
- Porter, S.C., Pierce, K.L., and Hamilton, T.D., 1983, Late Wisconsin mountain glaciation in the western United States, *in* Porter, S.C., ed., Late Quaternary environments in the western United States. The late Pleistocene, volume 1: Minneapolis, University of Minnesota Press, p. 71–111.
- Schaefer, J.M., Denton, G.H., Ivy-Ochs, S., Kubik, P.W., Barrell, D.J., Phillips, F., Schluechter, C., Andersen, B.G., and Lowell, T.V., 2006, Nearsynchronous interhemispheric termination of the Last Glacial Maximum in mid-latitudes: Science, v. 312, p. 1510–1513, doi: 10.1126/ science.1122872.
- Schildgen, T., 2000, Fire and ice: Geomorphic history of Middle Boulder Creek as determined by isotopic dating techniques, CO Front Range [B.S. thesis]: Williamstown, Massachusetts, Williams College, 30 p.
- Scott, G.R., 1984, Part III—Pleistocene floods along the Arkansas River, Chaffee County, Colorado, *in* Nelson, A.R., et al., eds., Quaternary deposits of the Upper Arkansas River Valley, Colorado: Boulder, Colorado, American Quaternary Association, 8th Biennial Meeting, August 16–17, 1984, unpublished guide for Field Trip No.7, p. 51–57.
- Stuiver, M., and Grootes, P.M., 2000, GISP2 Oxygen isotope ratios: Quaternary Research, v. 53, p. 277–284, doi: 10.1006/gres.2000.2127.
- Thackray, G.D., 2008, Varied climatic and topographic influences on late Pleistocene mountain glaciation in the western United States: Journal of Quaternary Science, v. 23, p. 671– 681, doi: 10.1002/jqs.1210.
- Thackray, G.D., Lundeen, K.A., and Borgert, J.A., 2004, Latest Pleistocene alpine glacier advances in the Sawtooth Mountains, Idaho, USA: Reflections of midlatitude moisture transport at the close of the last glaciation: Geology, v. 32, p. 225–228, doi: 10.1130/G20174.1.
- Ward, D.J., Anderson, R.S., Guido, Z.S., and Briner, J.P., 2009, Numerical modeling of cosmogenic deglaciation records, Front Range and San Juan Mountains, Colorado: Journal of Geophysical Research, v. 114, F01026, doi: 10.1029/2008JF001057.

Manuscript received 29 June 2010 Revised manuscript received 22 September 2010 Manuscript accepted 25 September 2010

Printed in USA

Assessing climatic and nonclimatic forcing of Pinedale glaciation and deglaciation in the western US

Nicolás E. Young, Jason P. Briner, Eric M. Leonard, Joesph M. Licciardi, and Keenan Lee

Pinedale nomenclature

The name 'Pinedale' historically refers to end moraines at the type locality in Pinedale, Wyoming, corresponding to the maximum phase of marine oxygen isotope stage 2 glaciation (Blackwelder, 1915; Gosse et al., 1995a). Initially, moraines across the western US were correlated to the type deposits by relative dating criteria. However, detailed numerical dating has since revealed that many moraines originally referred to as 'Pinedale' are not actually the same age as the terminal moraines at the type locality. Here, we use the name 'Pinedale' in reference to terminal and recessional moraines in the western US that are of marine oxygen isotope stage 2 age.

Upper Arkansas River valley glacial geomorphology

The Upper Arkansas valley in central Colorado encompasses the headwaters for the Arkansas River, which drains the Mosquito Range situated to the east and the Sawatch Range to the west. Bedrock in the region is composed primarily of Precambrian plutonic and metamorphic rocks (granites and gneisses), with exposures of late Cretaceous and Tertiary plutonic rocks (Tweto et al., 1976; 1978; Scott et al., 1978). During the latest Pleistocene glaciation (e.g. Pinedale), Sawatch Range glaciers extended eastward towards the north-south trending upper Arkansas River valley. Notably, glaciers that flowed down Lake Creek, Clear Creek, and Pine Creek valleys extended beyond the range front and onto the Upper Arkansas valley floor, depositing large latero-frontal moraines.

Initial work in the area identified four flood terraces along the Arkansas River south of Pine Creek (Scott, 1975, 1984). Terraces were tentatively correlated to glacier maxima and subsequent outburst floods occurring during the early Pleistocene (uppermost terrace), middle Pleistocene, and late Pleistocene (two lowermost terraces; Scott, 1984). The age of the uppermost terrace is constrained by an outcrop of alluvium containing flood boulders, which is correlated to a surface ~20 km away containing Bishop Ash (~760 ka; Sarna-Wojcicki et al., 2000). Tributary alluvial fans sourced from the Mosquito Range, containing Lava Creek B ash (~640 ka; Lanphere et al., 2002), are correlated with the next highest flood deposit (Scott, 1984). The two lower terraces lie within Pinedale-age outwash and are strewn with large boulders, almost all of which are composed of granodiorite (Scott, 1975); smaller clasts are composed of both granodiorite and metamorphic lithologies. These boulders were likely dislodged from moraines and valley walls during flooding. We only focused on the lowest two terraces of the four (i.e., the late Pleistocene terraces), which we refer to in the text as higher and lower.

Upper Arkansas River valley ¹⁰Be ages

Samples from flood terraces (n = 8), the Clear Creek Pinedale terminal moraine (n = 5), and glacial-sculpted bedrock surfaces up-valley from moraines in Pine Creek and Lake Creek valleys (n = 6) were collected with hammer and chisel. Sampled boulders on the Clear Creek moraine were all >1 m in height and sampled terrace boulders were at least 1.5 m tall (Fig. DR1). At all locations, samples were collected from horizontal to near-horizontal surfaces and we avoided sampling from boulder edges and corners. Geographic coordinates and sample elevation were collected with a handheld GPS unit and a clinometer was used to measure shielding by the surrounding topography.

All samples were processed at the University at Buffalo Cosmogenic Isotope Laboratory. Quartz was isolated from bulk samples following procedures modified from Kohl and Nishiizumi (1992). Samples were first crushed and sieved to isolate the 425-850 μ m size fraction and then pretreated in dilute HCl and HNO₃-HF acid baths. Quartz (~16-35 g) was isolated by heavy-liquid mineral separation and additional HNO₃-HF heated sonification baths. ⁹Be carrier (~250- 350 μ g; SPEX 1000 μ g/g) was added to each sample prior to digestion in concentrated HF. Beryllium was extracted using ion-exchange chromatography, selective precipitation with NH₄OH, and final oxidation to BeO.

¹⁰Be/⁹Be AMS measurements were completed at the Purdue Rare Isotope Measurement (PRIME) Laboratory and Lawrence Livermore National Laboratory Center for Mass Spectrometry (LLNL-CAMS). Samples measured at both PRIME lab (n = 11) and LLNL-CAMS (n = 8), were normalized to 07KNSTD standard reference material (Nishiizumi et al., 2007). ¹⁰Be/⁹Be ratios for process blanks (n = 3) averaged 1.80 x 10⁻¹⁴ ± 1.38 x 10⁻¹⁴. AMS precision for blank-corrected ¹⁰Be/⁹Be sample ratios ranged from 2.0-4.6%.

¹⁰Be exposure ages (Tables DR1 and 2) were calculated using the CRONUS-Earth online exposure age calculator (http://hess.ess.washington.edu/ math; Version 2.2; Balco et al., 2008). Ages were calculated using the global reference ¹⁰Be production rate (PR) of 4.49 ± 0.39 atoms g⁻¹ vr⁻¹ and the non-timedependent production scaling scheme of Lal (1991)/Stone (2000). All ages are presented in ka with 1σ uncertainty. This updated PR reflects a normalization of ¹⁰Be calibration material to the 07KNSTD standard (Nishiizumi et al., 2007). We use the global PR and Lal/Stone (St) scaling primarily to be consistent with previously published ¹⁰Be ages from the western US. ¹⁰Be ages calculated with alternative scaling schemes that incorporate time-dependent production rates based on fluctuations in the Earth's magnetic field are presented in Table DR2. To further ensure consistency with other western US ¹⁰Be chronologies, ¹⁰Be ages are not corrected for the effects of snow cover or erosion. However, we note that samples were collected at windswept locations and rock surfaces displayed little evidence of surface weathering; we consider the effects of both snow cover and erosion to be minimal.

Arkansas River valley paleoglaciers

Ice-surface contours of paleo-glaciers in the Arkansas River valley were reconstructed by digitizing the areal extent of each paleo-glacier from the cirque headwall to the Pinedale terminal moraine on 1:24,000 scale USGS topographic maps. We follow previously established methods (e.g. Porter, 1975; Leonard, 1984; Brugger and Goldstein, 1999) and make general assumptions regarding ice-surface contour shape in the accumulation and ablation areas (Figure DR3). From the paleoglacier surface reconstructions, we calculated hypsometry, plotted as areaaltitude distributions, determined by calculating glacier surface area between successive ice-surface contours (Figure DR4). To estimate paleo-equilibrium-linealtitudes (ELA), we use an accumulation-area ratio of 0.65±0.05, which is a commonly used value and has been used nearby in Colorado (Meir and Post, 1962; Andrews and Miller, 1972; Leonard, 1984, Brugger and Goldstein, 1999). Reconstructed ELAs for Lake Creek, Clear Creek, and Pine Creek valleys are 3350 +64/-183 m (10,990 +210/-600 ft), 3232 + 72/- 149 m (10,605 +235/-490 ft), and 3315+99/-70 m. (10,875 +325/-230 ft), respectively (Figure DR4). Uncertainty values are derived from ELA reconstructions using AAR values of 0.6 (+) and 0.7 (-).

Compilation and recalculation of $^{10}{\rm Be}$ ages from Pinedale moraines across the western US

We compiled sample information for 180 surface exposure ages across the western US (Table DR1); all but two (26 Al) are 10 Be ages. Because PRs and scaling schemes are constantly being updated, all 10 Be ages were recalculated using the global PR and St scaling, before comparing our upper Arkansas River basin chronology to other western US chronologies. Recalculated 10 Be ages match those for recently published western US 10 Be ages that use the global PR and St scaling. In some cases, recalculated 10 Be ages were $\sim 2-3\%$ older than originally published values, which is due to a slight reduction of the global PR (i.e. 5.1 to 4.96 atoms g $^{-1}$ yr $^{-1}$) since publication of the original 10 Be ages. We also provide western US 10 Be ages calculated with different scaling schemes (Table DR2).

We recognize that newly emerging, regionally-calibrated, ¹⁰Be production rates are considerably lower (6 to 12%) than the global PR (e.g. Balco et al., 2009; Putnam et al., 2010) and that use of a lower PR would increase ¹⁰Be ages. In light of this, ¹⁰Be ages using the Northeast North America production rate (e.g. Balco et al., 2009) and the Lifton et al. (2005) scaling scheme (Table DR2; NE Li) are also reported. We present the Li scaling scheme because nuclide production rates in the Li scaling scheme rely strongly on elevation (e.g. Balco et al., 2008) and may be the most suitable to the relatively high elevations of Pinedale sample localities. ¹⁰Be ages calculated with these parameters change ¹⁰Be ages calculated with the global PR and St scaling by -2 to +9%. Finally, Table DR1 provides all of the necessary input values in which to recalculate western US surface exposure ages on the CRONUS website.

Comparing chronologies of glaciation and deglaciation

Prior to comparing western US chronologies, all ¹⁰Be ages were re-calculated using the same parameters (Tables DR1 and DR2) and then plotted against the normalized glacier length of each respective glacier system (Fig. 3; Table DR3). Glacier length at each location, including valleys within the Arkansas River drainage basin, was determined by measuring the distance between the cirque headwall and each dated ice margin position (Table DR3). In valleys with multiple drainages and cirques, we only measured the distance between the dated ice-margin position and the cirque in which the timing of deglaciation is constrained. Below, we briefly summarize the chronological constraints of Pinedale and equivalent moraines and valley deglaciation used in our compilation.

Three studies from Colorado and Utah meet the aforementioned criteria. Guido et al. (2007) dated the Pinedale maximum ice extent in the Animas River valley, southwestern CO, to 19.4 ± 1.5 ka, and Ward et al. (2009) present 4 ages from the Pinedale terminal moraine in the Middle Boulder Creek valley in the Colorado Front Range that average 20.3 ± 2.1 ka. Subsequent retreat of both valley glaciers was constrained by dating a transect of glacially-sculpted bedrock samples. The upper 75% of the Animas River valley deglaciated between 15.1 and 12.3 ka (n=5) and the uppermost 64% of the Middle Boulder Creek valley deglaciated between 13.8 and 12 ka (n=10). In the western Uinta Mountains, Utah, ice remained at its Pinedale maximum limit until 15.8±2.5 ka (mean of 8 moraine boulders), and sculpted bedrock from the ice divide indicate final deglaciation at 14.3±0.4 ka (n=4; Refsnider et al., 2008), indicating complete deglaciation took place between ~15.8 and ~14.3 ka.

Using our criteria, four studies were selected from Wyoming, the Yellowstone region, and northeastern Oregon. In the Wind River Range, WY, Gosse et al. (1995a, b) dated dozens of boulders from a belt of moraines near Fremont Lake, as well as moraine boulders close to the cirgue head in the Titcomb Lakes basin. ¹⁰Be ages from the terminal moraine average 23.9±1.1 ka; the innermost recessional moraine near Fremont Lake dates to 17.9±1.4 ka (which lies at 94% of the maximum Pinedale glacier length; below, we list glacier-length fractions associated with each dated location). Farther upvalley, the Titcomb Lakes moraine is dated to 12.7±0.5 ka (12%), and boulders just beyond the moraine average 14.0±1.2 ka (13%); combined, these data from the Wind River Range indicate that the valley glacier retreated from 94 to 13% of its Pinedale maximum length between \sim 17.9 and \sim 14 ka. At the northwestern margin of the Yellowstone Ice Cap, a terminal moraine and inboard end moraine date to 16.5±1.4 ka (100%) and 16.1±1.7 ka (94%), respectively (Licciardi et al., 2001; Licciardi and Pierce, 2008). Closer to the ice divide in the same sector of the Yellowstone Ice Cap are moraines (Deckard Flats; Junction Butte) dated at 14.2±1.2 ka (48%) and 14.2±0.4 ka (21%; vounger mode of a bimodal age distribution), indicating that ice retreated from 94 to 21% of its Pinedale maximum length between ~16.1 and ~14.2 ka. However, once the local ELA rose above the relatively broad ice cap plateau, ice loss may have occurred quickly (Pierce, 1979); this change may be exaggerated in the glacial chronology. In the Teton Range, ¹⁰Be ages from Pinedale end moraines at Jenny Lake are 14.6 ± 0.7 ka (100%) and 13.5 ± 1.1 ka (99%), although it is unclear if these moraines represent the maximum Pinedale extent (Licciardi and Pierce, 2008).

Ages for deglaciation upvalley from Jenny Lake are 14.8 ± 0.2 ka (79%), 13.8 ± 0.3 ka (22%) and 12.8 ± 0.6 ka (13%), indicating rapid deglaciation of the valley between ~14.8 and ~12.8 ka. In the Wallowa Mountains, northeastern Oregon, ¹⁰Be ages from the Pinedale terminal moraine average 21.8 ± 0.9 ka (Licciardi et al., 2004). End moraines upvalley from the terminal moraine date to 16.9 ± 0.2 ka (96%) and 17.3 ± 0.9 ka (93%), and the glacier was occupying just the cirque by 11.2 ± 1.3 ka (1%), indicating near-complete deglaciation between ~17 and ~11.2 ka.

Outside of the Rocky Mountains, additional studies in the Washington Cascades and the Sierra Nevada meet our criteria. In Icicle Creek, the terminal moraine and adjacent end moraine are 19.1 ± 3.0 ka (100%) and 16.1 ± 1.1 ka (97%), respectively (Porter and Swanson, 2008). Farther up-valley, end moraines date to 13.3 ± 0.8 ka (36%) and 12.5 ± 0.5 ka (33%), indicating that the majority of the Icicle Creek valley was deglaciated between \sim 16.1 and \sim 13.3 ka. In the eastern Sierra Nevada, the Tioga glaciation (Pinedale equivalent) is mapped as a four-fold moraine sequence spanning from \sim 27 to \sim 15 ka (Clark and Gillespie, 1997; Phillips et al., 2009). Most relevant here is that during the youngest (Tioga-4) phase, glaciers remained at ~65-80% of their Tioga maximum length until 14.9±1.9 ka [average of Tioga-4 ³⁶Cl ages reported by Phillips et al., (1996, 2009)]. Subsequent deglaciation is based on the age of the Recess Peak cirgue glacier advance, when glaciers were 5-15% of their Tioga maximum extents just prior to \sim 13 ka (Clark and Gillespie, 1997), and ³⁶Cl ages from between Recess Peak and Tioga 4 moraines, which average 13.8±1.0 ka (Phillips et al., 2009). Thus, the upper 65-80% of eastern Sierra Nevada valleys rapidly deglaciated between \sim 14.9 and \sim 13 ka.

The graphic compilation (Figure 3, main text)

We make several assumptions in order to plot the ages in Figure 3 (main text). (1) We exclude one old outlier (Molas Lake sample) from the Animas River dataset, consistent with original interpretation by Guido et al. (2007). (2) From Middle Boulder Creek, only ages from the main valley are used. Although four ¹⁰Be ages from a tributary valley suggest that it may have completely deglaciated \sim 16.0±0.3 ka (Ward et al., 2009), at least one of the four ¹⁰Be ages from the tributary is interpreted to have inheritance. In addition, because there are only a few ages from the tributary, we only plot the transect of ages from the main valley on Figure 3. Furthermore, we average the 6 bedrock ages from the northern tributary cirgue and plot as one position (Ward et al., 2009). (3) In the northwest Yellowstone area, the innermost moraine dated (Junction Butte) has two modes, the older of which is older than the Deckard Flats moraine ~30 km down ice-flowline (Licciardi and Pierce, 2008). Thus, we plotted the younger mode of the Junction Butte moraine on Figure 3. (4) The Pinedale terminal moraine in the northwest Yellowstone region was also dated with ³He, which yields an average age of 16.6±1.3 ka (10 Be age = 16.5±1.4 ka); we only show the average 10 Be age in Figure 3. (5) For the dataset from Fremont Lakes, Wind River Range, we plot the average ages from each individual moraine crest shown in figure 1 in Gosse et al. (1995a). (6) We excluded one old outlier (17.0±0.5 ka) of the four erratics outboard of the Titcomb Lakes moraines (Gosse et al., 1995b). (7) The Icicle Creek (Porter and Swanson,

2008) and Bishop Creek samples (see Phillips et al., 2009) are ³⁶Cl ages; we did no recalculations of these, and report what the authors originally reported. See Phillips et al. (2009) for a discussion of ³⁶Cl production rates. (8). To obtain the average age of the Tioga 4 moraine, we calculated an average of all Tioga 4 moraine boulder ³⁶Cl ages reported by Phillips et al. (1996, 2009), which includes moraines at Bloody Canyon, Little McGee Creek, Chiatovich Creek, and Bishop Creek. (9) Phillips et al. (2009) report several ³⁶Cl ages from glacially-sculpted bedrock between Tioga 4 moraines and Recess Peak moraines; because there is no trend in the ages (Phillips et al., 2009), we plot only the ages of the Tioga 4 and Recess Peak moraines on Figure 3, but note that deglaciation between the two glacier positions at 13.8±1.0 ka falls within the typical range for the age of deglaciation compiled here.

A few other considerations about our data compilation warrant mention. First, there are many additional Pinedale terminal and other end moraines that have been dated in the Rocky Mountains. However, because our goal is to have moraine ages be within the context of information on deglaciation, we did not include them here. Additional Pinedale moraine chronologies from the Rocky Mountains are available from Colorado (Benson et al., 2004, 2005; Brugger, 2007), Wyoming (Phillips et al., 1997), elsewhere in the Uinta Mountains (Laabs et al., 2009 and references therein), and elsewhere around the Yellowstone Ice Cap (Licciardi and Pierce, 2008). Boulder Mountain, located in southern Utah on the Colorado Plateau, hosted a small ice cap that reached its Pinedale maximum sometime between ca. 23 and 20 ka (Marchetti et al., 2005). ³He ages on four moraines \sim 3 km upvalley and near the plateau accumulation zone either overlap Pinedale terminal moraine ages (2 moraines), or date to \sim 16.8 and 15.2 ka (2 moraines). However, the timeline of deglaciation after ~ 16 ka is not known and thus not included in Figure 3 (main text). Fabel et al. (2004) provide additional bedrock ages from the Wind River Range and Sierra Nevada. Our synthesis includes predominantly cosmogenic exposure ages, but we emphasize that although cosmogenic exposure ages provide the bulk of age control on moraines in the Rocky Mountains, these studies necessarily rely on a foundation of decades of mapping and relative dating studies that have taken place across the western US.

Second, there are different approaches regarding how best to interpret a series of individual moraine boulder ages. Mainly, one can either calculate the mean age of all moraine boulder ages, or more weight can be placed on the oldest ages of the distribution. Because moraines degrade, which potentially skews ages in the young direction, and because of the general scarcity of isotopic inheritance (Putkonen and Swanson, 2003), some authors favor the oldest age in a distribution. However, since the majority of the moraines considered here are relatively young (e.g., Pinedale), and generally have age distributions that are normally distributed about their mean, we plot mean ages. Additionally, for this reason, we plot on Figure 3 (main text) the onset of deglaciation (~17.3 ka) that Schaefer et al. (2006) base on average ages, rather than the oldest age (~19.1 ka).

Finally, the onset of deglaciation proposed by Schaefer et al. (2006, \sim 17.3 ka) is based on a synthesis of primarily ¹⁰Be data, along with additional radiocarbon data from northern and southern hemisphere LGM moraine datasets. Therefore the onset of deglaciation age assignment would change if ¹⁰Be ages were recalculated

using different production rates and scaling schemes. The production rate used in Schaefer et al. (2006) is ~ 2.7% percent higher than the production rate we use for western US chronologies (i.e. 5.1 vs 4.96 atoms g⁻¹yr⁻¹). However, applying the lower production rate to the dataset of Schaefer et al. (2006) would not necessarily result in all ¹⁰Be ages becoming 2.7% older. For example, using the St scaling scheme, recalculated ¹⁰Be ages from the Wallowa Mountains dataset, which is included in both the Schaefer et al. (2006) and our synthesis, result in ages that are within 2% of those reported in Schaefer et al. (2006). Thus, we consider any potential change to the onset of deglaciation age reported by Schaefer et al. (2006) to be minimal and use the original age of ~17.3 ka in our discussion and figure 3 (main text).

Supplemental References

- Andres, J.T., and Miller, G.H., 1972, Quaternary history of northern Cumberland Peninsula, Baffin Island, N.W.T., Canada: Part IV: Maps of present glaciation limits and lowest equilibrium line altitude for north and south Baffin Island: Arctic and Alpine Research, v. 4, p. 45-59.
- Balco, G., Stone, J.O., Lifton, N.A., and Dunai, T.J., 2008, A complete and easily accessible means of calculating surface exposure ages or erosion rates from ¹⁰Be and ²⁶Al measurements: Quaternary Geochronology, v. 3, p. 174-195, doi:10.1016/j.quageo. 2007.12.001.
- Balco, G., Briner, J. P., Rayburn, J., Ridge, J. C., and Schaefer, J. M., 2009, Regional beryllium-10 production rate calibration for northeastern North America: Quaternary Geochronology, v. 4, p. 93-107
- Benson, L., Madole, R., Phillips, W., Landis, G., Thomas, T., and Kubik, P., 2004, The probable importance of snow and sediment shielding on cosmogenic ages of north-central Colorado Pinedale and pre-Pinedale moraines: Quaternary Science Reviews, v. 23, p. 193–206.
- Benson, L., Madole, R., Landis, G., and Gosse, J., 2005, New data for Late Pleistocene Pinedale alpine glaciation from southwestern Colorado: Quaternary Science Reviews, v. 24, p. 49–65.
- Blackwelder, E., 1915, Post-Cretaceous history of the mountains of central western Wyoming: Journal of Geology, v. 23, p. 307-340.
- Brugger, K.A., 2007, Cosmogenic ¹⁰Be and ³⁶Cl ages from Late Pleistocene terminal moraine complexes in the Taylor River drainage basin, central Colorado, USA: Quaternary Science Reviews, v. 26, p. 494–499.
- Brugger, K.A., and Goldstein, B.S., 1999, Paleoglacier reconstruction and late Pleistocene equilibrium-line altitudes, southern Sawatch Range, Colorado: Geological Society of America Special Paper, v. 337, p. 103-112.
- Clark, D.H., and Gillespie, A.R., 1997, Timing and significance of late-glacial and Holocene cirque glaciation in the Sierra Nevada, California: Quaternary International, v. 38/39, p. 21–38.
- Desilets, D., and Zreda, M., 2003, Spatial and temporal distribution of secondary cosmic-ray nucleon intensities and applications to in-situ cosmogenic dating. Earth and Planetary Science Letters, v. 206, p. 21–42.

- Desilets, D., Zreda, M., and Prabu, T., 2006, Extended scaling factors for in situ cosmogenic nuclides: New measurements at low latitude: Earth and Planetary Science Letters, v. 246, p. 265–276.
- Dunai, T.J., 2001, Influence of secular variation of the geomagnetic field on production rates of in situ produced cosmogenic nuclides: Earth and Planetary Science Letters, v. 193, p. 197–212.
- Fabel, D., Harbor, J., Dahms, D., James, A., Elmore, D., Horn, L., Daley, K., and Steele, C., 2004, Spatial patterns of glacial erosion at a valley scale derived from terrestrial cosmogenic ¹⁰Be and ²⁶Al concentrations in rock: Annals of the Association of American Geographers, v. 94, p. 241-255.
- Gosse, J.C., Klein, J., Evenson, E.B., Lawn, B., and Middleton, R., 1995a, Beryllium-10 dating of the duration and retreat of the last Pinedale glacial sequence: Science, v. 268, p. 1329–1333.
- Gosse, J.C., Evenson, E.B., Klein, J., Lawn, B., and Middleton, R., 1995b, Precise cosmogenic ¹⁰Be measurements in western North America: support for a global Younger Dryas cooling event: Geology, v. 23, p. 877–880.
- Guido, Z.S., Ward, D.J., and Anderson, R.S., 2007, Pacing the post-Last Glacial Maximum demise of the Animas Valley glacier and the San Juan Mountain ice cap, Colorado: Geology, v. 35, p. 739–742.
- Kohl, C.P., and Nishiizumi, K., 1992, Chemical isolation of quartz for measurement of insitu- produced cosmogenic nuclides: Geochimica et Cosmochimica Acta, v. 56, p. 3583–3587.
- Laabs, B.J.C., Refsnider, K.A., Munroe, J.S., Mickelson, D.M., Applegate, P.M., Singer, B.S., and Caffee, M.W., 2009, Latest Pleistocene glacial chronology of the Uinta Mountains: support for moisture-driven asynchrony of the last deglaciation: Quaternary Science Reviews, v. 28, p. 1171-1187.
- Lal, D., 1991. Cosmic ray labeling of erosion surfaces: in-situ nuclide production rates and erosion models: Earth and Planetary Science Letters, v. 104, p. 424–439.
- Lanphere, M.A., Champion, D.E., Christiansen, R.L., Izett, G.A., and Obradovich, J.D., 2002, Revised ages for tuffs of the Yellowstone Plateau volcanic field: assignment of the Huckleberry Ridge Tuff to a new geomagnetic polarity event: Geological Society of America Bulletin, v. 114, p.559-568.
- Leonard, E. M., 1984, Late Pleistocene equilibrium-line altitudes and modern snow accumulation patterns, San Juan Mountains, Colorado, U.S.A.: Arctic and Alpine Research, v. 16, p. 65–76.
- Licciardi, J.M., Clark, P.U., Brook, E.J., Pierce, K.L., Kurz, M.D., Elmore, D., and Sharma, P., 2001, Cosmogenic ³He and ¹⁰Be chronologies of the late Pinedale northern Yellowstone ice cap, Montana, USA: Geology, v. 29, p. 1095–1098.
- Licciardi, J.M., Clark, P.U., Brook, E.J., Elmore, D., and Sharma, P., 2004, Variable responses of western US glaciers during the last deglaciation: Geology, v. 32, p. 81–84.
- Licciardi, J.M., and Pierce, K.L., 2008, Cosmogenic exposure-age chronologies of Pinedale and Bull Lake glaciations in greater Yellowstone and the Teton Range, USA: Quaternary Science Reviews, v. 27, p. 814-831.

- Lifton, N.A., Bieber, J., Clem, J., Duldig, M., Evenson, P., Humble, J., and Pyle, R., 2005, Addressing solar modulation and long-term uncertainties in scaling secondary cosmic rays for in situ cosmogenic nuclide applications: Earth and Planetary Science Letters, v. 239, p. 140–161.
- Marchetti, D.W., Cerling, T.E., and Lips, E.W., 2005, A glacial chronology for the Fish Creek drainage of Boulder Mountain, Utah, USA: Quaternary Research, v. 64, p. 263-271.
- Meir, M.F., and Post, A.S., 1962, Recent variations in mass net budgets of glaciers in western North America. IUGG/IASH committee on snow and ice, Symposium of Obergurgl: International Association of Scientific Hydrology Publication, v. 58, p. 63-77.
- Nishiizumi, K., Imamura, M., Caffee, M., Southon, J., Finkel, R., and McAnich, J., 2007, Absolute calibration of ¹⁰Be AMS standards: Nuclear Instruments and Methods in Physics Research B, v. 258, p. 403-413.
- Pierce, K.l., 1979, History and dynamics of glaciation in the northern Yellowstone National Park area: US Geological Survey Professional Paper, 729-F, 90 pp.
- Phillips, F.M., Zreda, M.G., Benson, L.V., Plummer, M.A., Elmore, D., and Sharma, P., 1996, Chronology for fluctuations in late Pleistocene Sierra Nevada glaciers and lakes. Science, v. 274, p. 749–751.
- Phillips, F.M., Zreda, M.G., Evenson, E.B., Hall, R.D., Chadwick, O.A., and Sharma, P., 1997, Cosmogenic Cl-36 and Be-10 ages of Quaternary glacial and fluvial deposits of the Wind River Range, Wyoming: Geological Society of America Bulletin, v. 109, p. 1453–1463.
- Phillips, F.M., Zreda, M.G., Plummer, M.A., Elmore, D., and Clark, D.H., 2009, Glacial geology and chronology of Bishop Creek and vicinity, eastern Sierra Nevada, California: Geological Society of America Bulletin, v. 121, p. 1013-1033.
- Porter, S. C., 1975, Equilibrium-line altitudes of late Quaternary glaciers in the Southern Alps, New Zealand: Quaternary Research, v. 5, p. 27–47.
- Porter, S.C., and Swanson, T.W., 2008, ³⁶Cl Dating of the classic Pleistocene glacial record in the northeastern Cascade Range, Washington: American Journal of Science, v. 308, p. 130-166.
- Putkonen, J., and Swanson, T., 2003, Accuracy of cosmogenic ages for moraines: Quaternary Research, v. 59, p. 255–261.
- Putnam. A.E., Schaefer, J.M., Barrell, D.J.A., Vandergoes, M., Denton, G.H., Kaplan, M.R., Finkel, R.C., Schwartz, R., Goehring, B.M., and Kelley, S.E., 2010, In situ cosmogenic ¹⁰Be production-rate calibration from the Southern Alps, New Zealand: Quaternary Science Reviews, v. 5, p. 392-409 doi:10.1016/j.quageo.2009.12.001.
- Refsnider, K.A., Laabs, B.J.C., Plummer, M.A., Mickelson, D.M., Singer, B.S., and Caffee, M.W., 2008, Last Glacial Maximum climate inferences from cosmogenic dating and glacier modeling of the western Uinta ice field, Uinta Mountains, Utah. Quaternary Research, v. 69, p. 130–144.
- Sarna-Wojcicki, A.M., Pringle, M.S., Wijbrans, J., 2000, New 40Ar/39Ar age of the Bishop Tuff from multiple sites and sedimentation rate calibration of the Matuyama-Brunhes boundary: Journal of Geophysical Research, v. 105, p. 21 431-21 443.

- Schaefer, J.M., Denton, G.H., Ivy-Ochs, S., Kubik, P.W., Barrell, D.J., Phillips, F., Schluechter, C., Andersen, B.G., and Lowell, T.V., 2006, Near- Synchronous Interhemispheric Termination of the Last Glacial Maximum in Mid-Latitudes: Science, v. 312, p. 1510-1513.
- Scott, G. R, 1975, Reconnaissance geologic map of the Buena Vista quadrangle, Chaffee and Park Counties, Colorado: U.S. Geological Survey Map MF-657, 1:62,500 scale.
- Scott, G. R, 1984, Part III-Pleistocene floods along the Arkansas River, Chaffee County, Colorado. In Nelson, A. R., Shroba, R.R, and Scott, G. R, Quaternary Deposits of the Upper Arkansas River Valley, Colorado. Boulder, Colorado: American Quaternary Association, 8th Biennial Meeting, August 16-17, 1984, unpublished guide for Field Trip No.7, 51-57.
- Scott, G.R, Taylor, R.B., Epis, R.C., and Wobus, R.A., 1978, Geologic map of the Pueblo l° x 2° Quadrangle, south-central Colorado: U.S. Geological Survey Map MI-1022, 1:250,000 scale.
- Stone, J.O., 2000, Air pressure and cosmogenic isotope production: Journal of Geophysical Research, v. 105, p. 23,753–23,759.
- Tweto, O., Steven, T.A., Hail, W.J., and Moench, R.H., 1976, Preliminary geologic map of the Montrose l° x 2° Quadrangle, southwestern Colorado: U.S. Geological Survey Map MF-761, 1:250,000 scale.
- Tweto, O., Moench, R H., and Reed, C., Jr., 1978, Geologic map of the Leadville l° x 2° quadrangle, northeastern Colorado: U.S. Geological Survey Map 1-999, 1:250,000 scale.
- Ward, D.J., Anderson, R.S., Guido, Z.S., and Briner, J.P., 2009, Numerical modeling of cosmogenic deglaciation records, Front Range and San Juan mountains, Colorado: Journal of Geophysical Research, v. 114, F01026.

<i>"</i>	T (* 1	T ''' I		751 • 1	р. <u>'</u>	Shielding	¹⁰ Be	¹⁰ Be			S 1 4	D.f.
Sample	Latitude	Longitiude	Elevation	Thickness	Density	correction	concentration	uncertainty	¹⁰ Be standard	¹⁰ Be age ^a	Sample type	Reference
Lake Creek.CO							(atoms g ^{*1})	(atoms g ¹)				
AR09-01	39.065896	-106.407026	2930	1.5	2.65	0.996	513651.9202	12461.80	07KNSTD	14.7 ± 0.4	bedrock	1
AR09-10	39.070594	-106.471824	3048	3.5	2.65	0.989	508739.7905	13867.28	07KNSTD	13.9 ± 0.4	bedrock	1
AR09-11	39.100977	-106.544485	3261	4	2.65	0.983	543494.3132	10770.61	07KNSTD	13.2 ± 0.3	bedrock	1
DC-91-2	39.069676	-106.288887	2850	1	2.7	1	730000	20000	KNSTD	19.7 ± 0.5	moraine boulder	2
Clear Creek, CO												
MF06-01	39.027	-106.269	2938	2	2.65	1	682066.2649	20016.76	07KNSTD	19.5 ± 0.6	moraine boulder	1
MF06-02	39.028	-106.274	2953	1.5	2.65	1	686464.4184	15997.73	07KNSTD	19.3 ± 0.4	moraine boulder	1
MF06-03	39.027	-106.281	2957	2	2.65	1	768307.6912	19615.79	07KNSTD	21.7 ± 0.6	moraine boulder	1
MF06-04	39.026	-106.285	2964	2.5	2.65	1	676327.9371	12545.56	07KNSTD	19.1 ± 0.4	moraine boulder	1
MF06-05	39.026	-106.286	2971	3	2.65	1	540315.0162	14668.53	07KNSTD	15.2 ± 0.4	moraine boulder	1
AR09-03	39.002602	-106.33924	2835	2	2.65	0.992	462709.1138	9308.48	07KNSTD	14.1 ± 0.3	bedrock	1
Pine Creek, CO												
PC1	38.9808	-106.23245	2992	3	2.65	1	828000	19360	KNSTD	20.9 ± 0.5	moraine boulder	3
PC2	38.9807	-106.232369	2992	1	2.65	1	546000	15894	KNSTD	13.5 ± 0.4	moraine boulder	3
PC3	38.9802	-106.23405	2911	1	2.65	1	599000	15943	KNSTD	15.6 ± 0.4	moraine boulder	3
PC4	38.9802	-106.23405	2911	1	2.65	1	859000	20037	KNSTD	22.4 ± 0.5	moraine boulder	3
PC5	38.9818	-106.23165	2845	3	2.65	1	890000	26017	KNSTD	24.5 ± 0.7	moraine boulder	3
PC6	38.9817	-106.231633	2893	1	2.65	1	610000	14423	KNSTD	16.0 ± 0.4	moraine boulder	3
PC7	38.9865	-106.2274	2877	1	2.65	1	858000	20223	KNSTD	22.8 ± 0.5	moraine boulder	3
PC8	38.9889	-106.22725	2851	1	2.65	1	789000	15449	KNSTD	21.3 ± 0.4	moraine boulder	3
PC9	38.9901	-106.22695	2837	1	2.65	1	566000	13421	KNSTD	15.4 ± 0.4	moraine boulder	3
PC11	38.9917	-106.227233	2835	1	2.65	1	564000	13339	KNSTD	15.3 ± 0.4	moraine boulder	3
PC12	38.9980	-106.228633	2739	1.5	2.65	1	560500	13500	KNSTD	16.2 ± 0.4	moraine boulder	3
PC13	38.9979	-106.228528	2739	1	2.65	1	558000	13426	KNSTD	16.1 ± 0.4	moraine boulder	3
AR09-07	38.974371	-106.250598	2931	3	2.65	0.996	536779.4137	14280.09	07KNSTD	15.6 ± 0.4	bedrock	1
AR09-08	38.974371	-106.250598	2931	1	2.65	0.996	537780.799	10675.82	07KNSTD	15.3 ± 0.3	bedrock	1
ARK River valley, CO, Lowe	r flood terrace											
QPOY-01	38.983	-106.212	2616	2	2.65	0.995	495688.5285	12709.90	07KNSTD	17.3 ± 0.4	flood boulder	1
QPOY-02	38.984	-106.212	2616	4	2.65	0.999	486011.3045	23460.67	07KNSTD	17.2 ± 0.8	flood boulder	1
AR09-05	38.942935	-106.189466	2555	3	2.65	0.999	503687.0176	9990.57	07KNSTD	18.4 ± 0.4	flood boulder	1
AR09-06	38.942935	-106.189466	2555	2	2.65	0.999	499121.383	12060.47	07KNSTD	18.1 ± 0.4	flood boulder	1
ARK River valley, CO, Upper	r flood terrace											
QPOO-2	38.972	-106.204	2620	2.5	2.65	0.996	545831.9166	23470.77	07KNSTD	19.1 ± 0.8	flood boulder	1
QPOO-4	38.975	-106.205	2620	2	2.65	0.998	600223.1971	27610.27	07KNSTD	20.9 ± 1.0	flood boulder	1
QPOO-01	38.975	-106.205	2620	2	2.65	0.996	549660.9314	18527.31	07KNSTD	19.1 ± 0.6	flood boulder	1
QPOO-03	38.965	-106.201	2620	2	2.65	0.999	556144.5244	13713.09	07KNSTD	19.3 ± 0.5	flood boulder	1
<u>Animas Valley, CO</u>												
Baker's Bridge	37.46771	-107.79045	2155	0.7	2.7	0.894	359300	9000	KNSTD	17.5 ± 0.4	bedrock	4
Tacoma	37.56023	-107.77917	2285	2.5	2.7	0.917	330100	11600	KNSTD	14.6 ± 0.5	bedrock	4
Needleton	37.6286	-107.69437	2540	0.6	2.7	0.918	415300	10400	KNSTD	15.3 ± 0.4	bedrock	4
Silverton	37.78546	-107.66853	2835	3.5	2.7	0.482	242900	6400	KNSTD	14.3 ± 0.4	bedrock	4
Highland Mary Lake	37.91239	-107.5807	3704	1.2	2.7	0.948	698384	25421	KNSTD	12.6 ± 0.5	bedrock	4
Elk Crek	37.71465	-107.54033	3871	2.3	2.7	0.947	925981	25464	KNSTD	15.6 ± 0.4	bedrock	4
terminal outwash profile ^b	37.09641	-107.88684	1872	NA	NA	NA	NA	NA	NA	19.4 ± 1.5	depth profile	4

Table DR1. Sample information for western US cosmogenic surface exposure ages

Middle Boulder Creek, CO

Terminal moraine												
99-t74°	40	-105.558	2982	5	2.7	1	4322600 (26Al)	206600 (26Al)	KNSTD	$17.8 \pm 0.9^{\circ}$	moraine boulder	2
99-t76	40	-105.558	2982	5	2.7	1	822400	20300	KNSTD	20.6 ± 0.5	moraine boulder	2
99-t76°	40	-105 558	2982	5	27	1	4966400 (26A1)	234700 (²⁶ A1)	KNSTD	$20.5 \pm 1.0^{\circ}$	moraine boulder	2
MB4L-0	39 9579	-105 5242	2590	5	27	1	570029	51815	KNSTD	182 ± 1.0	moraine boulder	ĩ
WID+J-0	57.7517	-105.5242	2570	5	2.7	1	510025	51015	RIGID	10.2 ± 1.7	moranie bounder	5
Upvalley bedrock												
33_IB_25	39 9978	-105 6352	3162	3	27	0.978	552800	18100	KNSTD	125 ± 0.4	hedrock	5
GP4L 1	40.012	105.6749	3540	3	2.7	0.970	752000	23700	KNSTD	12.5 ± 0.4 13.5 ± 0.4	bedrock	5
CD4L2	40.012	105 6741	2521	2	2.7	0.070	732300	22100	KNSTD KNSTD	13.5 ± 0.4	bedroek	5
CP4J-2	40.0111	-105.0741	2520	5	2.7	0.979	747700	25600	KNSTD KNSTD	13.6 ± 0.4 12.6 ± 0.5	bedrock	5
CD41.4	40.0097	-105.0752	2484	10	2.7	0.993	704300	23000	KNOID	13.0 ± 0.3	bedrock	5
GP4J-4	40.0088	-105.0742	3484	3	2.7	0.995	722000	23000	KNSID	13.4 ± 0.4	bedrock	5
GP4J-5	40.0077	-105.6/41	3463	2	2.7	0.988	705200	22700	KNSID	13.2 ± 0.4	bedrock	2
GP4J-6	40.0103	-105.6681	3451	1	2.7	0.981	/04400	27500	KNSID	13.3 ± 0.5	bedrock	2
GP4J-7	40.0065	-105.6656	3434	1	2.7	0.986	635200	20100	KNSID	12.0 ± 0.4	bedrock	5
GP4J-10	39.9713	-105.6043	2904	5	2.7	0.976	514200	14400	KNSTD	13.8 ± 0.4	bedrock	5
GP4J-11	39.9872	-105.6242	3051	5	2.7	0.972	528200	19100	KNSTD	13.1 ± 0.5	bedrock	5
GP4J-23	39.9517	-105.5836	2708	5	2.7	0.979	587890	20575	KNSTD	17.8 ± 0.6	bedrock	5
Jenny Lake, WY												
Outer Jenny Lake moraine												
OJEN-1	43.7659	-110.7104	2102	2.25	2.7	1	354000	6000	KNSTD	14.1 ± 0.3	moraine boulder	7
OJEN-2	43.7664	-110.7107	2094	2.5	2.7	1	374000	9000	KNSTD	15.0 ± 0.4	moraine boulder	7
OJEN-3	43.7664	-110.711	2094	1.5	2.7	1	337000	8000	KNSTD	13.4 ± 0.3	moraine boulder	7
OJEN-5	43.7656	-110.7107	2092	1.5	2.7	1	361000	8000	KNSTD	14.4 ± 0.3	moraine boulder	7
OJEN-6	43.7652	-110.7104	2102	1.5	2.7	1	389000	9000	KNSTD	15.4 ± 0.4	moraine boulder	7
OJEN-7	43.765	-110.7103	2099	2	2.7	1	380000	9000	KNSTD	15.1 ± 0.4	moraine boulder	7
OJEN-8	43.7646	-110.7105	2095	1.5	2.7	1	364000	9000	KNSTD	14.4 ± 0.4	moraine boulder	7
OJEN-9	43,7646	-110.7105	2095	2	2.7	1	383000	9000	KNSTD	15.3 ± 0.4	moraine boulder	7
OJEN-10	43,7831	-110.7303	2115	2	2.7	0.992	340000	8000	KNSTD	13.5 ± 0.3	moraine boulder	7
OJEN-11	43,784	-110.7289	2100	2	2.7	0.992	375000	14000	KNSTD	15.0 ± 0.6	moraine boulder	7
Inner Jenny Lake moraine												
IJEN-1	43,7807	-110.7256	2113	1.75	2.7	1	337000	8000	KNSTD	13.2 ± 0.3	moraine boulder	7
LIEN-2	43,7804	-110.7248	2097	1.75	2.7	1	318000	9000	KNSTD	12.6 ± 0.4	moraine boulder	7
LIEN-3	43,7799	-110.7231	2108	2	2.7	1	355000	8000	KNSTD	14.0 ± 0.3	moraine boulder	7
HEN-5	43,7779	-110 7219	2110	2	2.7	1	296000	7000	KNSTD	11.7 ± 0.3	moraine boulder	7
LIEN-6	43,7751	-110 7186	2103	1.75	2.7	1	359000	9000	KNSTD	142 ± 02	moraine boulder	7
LIEN-7	43 7669	-110 714	2093	2	27	1	324000	8000	KNSTD	129 ± 0.3	moraine boulder	7
UFN-11	43 7581	-110 7158	2093	2	2.7	1	374000	9000	KNSTD	150 ± 0.5	moraine boulder	7
UEN-13	43 7577	-110 7165	2001	15	2.7	1	356000	8000	KNSTD	142 ± 0.1	moraine boulder	7
IJEN-15	45.7577	-110.7105	2000	1.5	2.7	1	550000	0000	RIGID	14.2 ± 0.5	moranie bounder	,
Unvalley												
BED-1	43 785	-110 8303	2618	1	27	0.955	473000	11000	KNSTD	138 ± 03	hedrock	7
BED 1 BED-2	43 767	-110 7491	2214	25	2.7	0.973	390000	7000	KNSTD	13.0 ± 0.3 14.8 ± 0.3	bedrock	7
IS 1	43 7021	110 8/11/	2767	2.5	2.7	0.975	483000	9000	KNSTD	14.0 ± 0.3 12.5 ± 0.3	boulder	7
187	43.7921	110 8/18	2707	15	2.7	0.985	528000	16000	KNSTD	12.5 ± 0.3 12.5 ± 0.3	boulder	7
158	43.7911	110.8416	2767	2 25	2.7	0.982	472000	11000	KNSTD	13.3 ± 0.3 12.3 ± 0.3	boulder	7
L3-8	43./914	-110.0410	2704	2.23	2.7	0.982	472000	11000	KNSTD	12.3 ± 0.3	Douidei	/
<u>NW Yellowstone, MT, WY</u>												
Fightmile terminal moraine												
8-B2	45 429	-110 707	1550	2.5	27	1	259000	17000	NIST Certified*	14.8 ± 1.0	moraine boulder	78
8 D1	45 429	110.705	1545	0.75	2.7	1	283000	16000	NIST Certified*	14.0 ± 1.0 16.0 ± 0.0	moraine boulder	7,8
8 F2	45.427	110.705	1545	1.5	2.7	1	205000	28000	NIST Certified*	10.0 ± 0.9 17.6 ± 1.6	moraine boulder	7,0
8 C2	45.437	-110.095	1520	1.5	2.1	1	324000	28000	NIST Cortified*	17.0 ± 1.0 10.2 ± 1.6	moraine boulder	7,0
0-UZ 8 11 12	45.450	-110.091	1529	1 75	2.1	1	286000	12000	NIST Cortified*	19.2 ± 1.0 16.5 ± 0.7	moraine boulder	7,0 7.8
0-11_12 9_11_12	45.455	-110.09	1529	1.15	2.1	1	200000	25000	NIST Contificat*	10.5 ± 0.7 17.0 ± 1.4	moraine boulder	/,0 7 0
0-J1_J2	43.303	-110.09	1554	2	2.1	1	298000	25000	ivisi_Ceruiled*	17.0 ± 1.4	morame bounder	٥, /

8-K1	45.429	-110.688	1536	2.75	2.7	1	291000	10000	NIST_Certified*	16.9 ± 0.6	moraine boulder	7,8
8-L1_L2	45.365	-110.69	1554	3	2.7	1	271000	12000	NIST_Certified*	15.6 ± 0.7	moraine boulder	7,8
8-M2	45.363	-110.691	1561	2.5	2.7	1	280000	11000	NIST_Certified*	15.9 ± 0.6	moraine boulder	7,8
									KNSTD			
Chico moraines									KNSTD			
CH-1A	45.339	-110.698	1628	2.5	2.7	1	264000	22000	NIST Certified*	14.3 ± 1.2	moraine boulder	7.8
CH-2A	45.337	-110.697	1634	1.75	2.7	1	290000	18000	NIST Certified*	15.5 ± 1.0	moraine boulder	7.8
CH-3B	45 334	-110 695	1652	1.75	2.7	1	298000	26000	NIST Certified*	158 ± 14	moraine boulder	78
CH-6A	45 335	-110 705	1615	1 75	27	1	264000	22000	NIST Certified*	143 ± 12	moraine boulder	7.8
CH 6B	45 335	110.705	1615	1.75	2.7	1	248000	22000	NIST Certified*	135 ± 1.2	moraine boulder	7.8
CH 8A	45 336	110.704	1615	0.75	2.7	1	327000	19000	NIST_Certified*	17.5 ± 1.5 17.6 ± 1.0	moraine boulder	7.8
CILOR	45 220	110.704	1619	1.75	2.7	1	210000	21000	NIST_Contified*	169 1 1 2	morane boulder	7,0
CIL 10D	45.550	-110.703	1610	1.75	2.7	1	247000	21000	NIST_Centified	10.0 ± 1.2	moranie boulder	7,0
CH-IUB	45.54	-110.703	1612	1.23	2.7	1	347000	20000	NIST_Certified*	18.8 ± 1.1	moraine boulder	7,8
CH-IIB	45.342	-110.703	1615	0.75	2.7	1	297000	14000	NISI_Certined*	16.0 ± 0.8	moraine boulder	7,8
									KNSTD			
Deckards Flats moraine	15.000	110 105						12000	KNSTD			
DF-1A	45.039	-110.685	1811	0.75	2.7	1	299000	13000	NIST_Certified*	14.0 ± 0.6	moraine boulder	7,8
DF-2B	45.039	-110.685	1811	1.75	2.7	1	271000	25000	NIST_Certified*	12.8 ± 1.2	moraine boulder	7,8
DF-3B	45.039	-110.685	1811	1.75	2.7	1	283000	19000	NIST_Certified*	13.4 ± 0.9	moraine boulder	7,8
DF-4A	45.039	-110.685	1811	1.75	2.7	1	267000	23000	NIST_Certified*	12.6 ± 1.1	moraine boulder	7,8
DF-5B	45.039	-110.685	1811	1.5	2.7	1	345000	14000	NIST Certified*	16.3 ± 0.7	moraine boulder	7,8
DF-6A	45.039	-110.685	1811	1.75	2.7	1	288000	15000	NIST Certified*	13.7 ± 0.7	moraine boulder	7.8
DF-6B	45.039	-110 685	1811	1.75	2.7	1	319000	24000	NIST Certified*	151 + 11	moraine boulder	7 8
DF-7A	45 039	-110 685	1811	1.5	2.7	1	307000	16000	NIST Certified*	145 ± 0.8	moraine boulder	7 8
DF-8A	45.038	-110 685	1807	1 25	27	1	323000	19000	NIST Certified*	153 ± 0.0	moraine boulder	7.8
DE 9B	45.038	110.684	1804	1.25	2.7	1	281000	11000	NIST_Certified*	13.5 ± 0.5 13.4 ± 0.5	moraine boulder	7,0
DE 104	45.028	110.692	1804	0.75	2.7	1	201000	20000	NIST_Contified*	15.4 ± 0.5	morane boulder	7,0
DF-I0A	45.058	-110.085	1601	0.75	2.1	1	522000	39000	NIST_Certified	13.2 ± 1.9	moranie bouider	7,0
Iunation Putta mongina												
Junction Butte morathe	44 0087	110 2742	1042	0.75	27	1	242000	8000	VNETD	147.02	monoino houldon	7
JB-1	44.9087	-110.3742	1942	0.75	2.7	1	342000	8000	KNSID	14.7 ± 0.3	moraine boulder	/
JB-2	44.9088	-110.3747	1941	1	2.7	1	333000	8000	KNSID	14.3 ± 0.3	moraine boulder	/
JB-4	44.9145	-110.3774	1907	1	2.7	1	321000	6000	KNSID	14.1 ± 0.3	moraine boulder	1
JB-7	44.9169	-110.3776	1897	1	2.7	1	320000	7000	KNSTD	14.2 ± 0.3	moraine boulder	7
JB-8	44.9174	-110.3783	1885	1	2.7	1	290000	8000	KNSTD	13.0 ± 0.4	moraine boulder	7
JB-11	44.9206	-110.3755	1886	1	2.7	1	322000	8000	KNSTD	14.4 ± 0.4	moraine boulder	7
<u>Wallowa, OR</u>												
TTO terminal moraine												
T1O-2B	45.321	-117.196	1530	1.75	2.8	1	363000	16000	NIST_Certified*	21.0 ± 0.9	moraine boulder	9
TTO-3B	45.319	-117.195	1536	1.75	2.8	1	377000	12000	NIST_Certified*	21.7 ± 0.7	moraine boulder	9
TTO-7A	45.326	-117.199	1524	2	2.8	1	373000	27000	NIST_Certified*	21.7 ± 1.6	moraine boulder	9
TTO-9B	45.328	-117.2	1509	1	2.8	1	355000	20000	NIST_Certified*	20.7 ± 1.2	moraine boulder	9
TTO-10B	45.326	-117.199	1524	1.25	2.8	1	399000	24000	NIST_Certified*	23.1 ± 1.4	moraine boulder	9
TTO-11A	45.333	-117.205	1481	1.5	2.8	1	373000	21000	NIST_Certified*	22.3 ± 1.3	moraine boulder	9
TTY end moraine												
TTY-1B	45.312	-117.193	1558	1.75	2.8	1	296000	18000	NIST_Certified*	16.7 ± 1.0	moraine boulder	9
TTY-3B	45.317	-117.195	1542	1.75	2.8	1	298000	24000	NIST_Certified*	17.0 ± 1.4	moraine boulder	9
TTY-6A	45.325	-117.199	1524	2	2.8	1	285000	21000	NIST Certified*	16.6 ± 1.2	moraine boulder	9
TTY-8A	45.329	-117.202	1498	2	2.8	1	366000	27000	NIST_Certified*	21.7 ± 1.6	moraine boulder	9
TTY-10B	45.331	-117.203	1487	1.5	2.8	1	351000	23000	NIST Certified*	20.9 ± 1.4	moraine boulder	9
TTY-12B	45.317	-117.221	1509	1.5	2.8	1	351000	19000	NIST Certified*	20.6 + 1.1	moraine boulder	9
TTY-13B	45.335	-117.208	1439	1.75	2.8	i	274000	12000	NIST Certified*	16.9 ± 0.7	moraine boulder	9
						•	2. 1000	-2000		,		-
WTO end moraine												
WTO-1B	45.324	-117.222	1475	1.75	2.8	1	294000	14000	NIST_Certified*	17.7 ± 0.8	moraine boulder	9
WTO-1C	45.324	-117.222	1475	1.75	2.8	1	313000	14000	NIST_Certified*	18.8 ± 0.8	moraine boulder	9

WTO-3B	45.325	-117.222	1466	1.75	2.8	1	265000	15000	NIST_Certified*	16.0 ± 0.9	moraine boulder	9
WTO-4A	45.326	-117.223	1460	1.75	2.8	1	297000	13000	NIST Certified*	18.1 ± 0.8	moraine boulder	9
WTO-5A	45.326	-117.223	1454	1.75	2.8	1	282000	10000	NIST Certified*	17.2 ± 0.6	moraine boulder	9
WTO-9B	45.327	-117.216	1405	2	2.8	1	260000	16000	NIST_Certified*	16.5 ± 1.0	moraine boulder	9
Clasier I ake moraine												
Glucier Lake moraine	45 158	117 282	2512	15	28	1	363000	15000	NIST Cortified*	10.5 ± 0.4	moraina hauldar	0
OL-1	45.150	-117.203	2512	1.5	2.0	1	201000	12000	NIST_Centilled	10.5 ± 0.4		2
GL-3	45.159	-117.284	2509	1.5	2.8	1	301000	12000	NIST_Certified*	8.1 ± 0.3	moraine boulder	9
GL-5	45.16	-117.285	2504	2.5	2.8	1	324000	20000	NIST_Certified*	9.5 ± 0.6	moraine boulder	9
GL-5C	45.16	-117.285	2504	2.5	2.8	1	348000	19000	NIST_Certified*	10.2 ± 0.6	moraine boulder	9
GL-6C	45.16	-117.285	2503	1.5	2.8	1	426000	35000	NIST_Certified*	12.4 ± 1.0	moraine boulder	9
GL-7B	45.16	-117.284	2502	1	2.8	1	351000	19000	NIST Certified*	10.2 ± 0.6	bedrock	9
Gl-7C	45.16	-117.284	2502	1	2.8	1	344000	32000	NIST_Certified*	10.0 ± 0.9	bedrock	9
Fremont/Titcomb, WRR,	Wymoing											
Fremont terminal moraine	2											
92-108-1	42.90	-109.85	2274	2	27	1	676000	20280	KNSTD	243 ± 07	moraine boulder	10
01 032	42.90	109.85	2214	5	2.7	1	685000	20250	KNSTD	24.5 ± 0.7 24.7 ± 0.7	moraine boulder	10
91-032	42.90	-109.85	2311	5	2.7	1	(25000	20330	KNSTD	24.7 ± 0.7		10
91-35	42.90	-109.85	2262	2	2.7	1	625000	18750	KNSTD	22.1 ± 0.1	moraine boulder	10
Soda Lake moraine												
91-003	42.93	-110	2276	14	2.7	1	518000	15500	KNSTD	20.5 ± 0.6	moraine boulder	10
91-004	42.93	-109.85	2279	5	2.7	1	671000	20130	KNSTD	24.7 ± 0.7	moraine boulder	10
Half Moon moraine												
92-117	42.91	-109.85	2357	3	2.7	1	645000	19350	KNSTD	22.1 ± 0.7	moraine boulder	10
92-119	42.91	-109.85	2319	5	2.7	1	609000	18270	KNSTD	21.8 ± 0.7	moraine boulder	10
Recessional moraines												
92-123	42 91	-109.85	2369	3	27	1	534000	16020	KNSTD	182 ± 05	moraine boulder	10
92-155	42.91	-109.85	2375	25	2.7	1	535000	16050	KNSTD	18.1 ± 0.5	moraine boulder	10
02 120	42.01	100.85	2300	5	2.7	1	561000	16830	KNSTD	10.1 ± 0.5	moraina bouldar	10
92-129	42.91	-109.85	2390	5	2.7	1	502000	15000	KNSTD VNSTD	17.1 ± 0.0	moraine boulder	10
92-124	42.91	-109.85	2557	5	2.7	1	505000	15090	KNSID	17.6 ± 0.3	moraine bouider	10
91-020	42.90	-109.85	2352	2	2.7	1	503000	15090	KNSTD	$1/.6 \pm 0.5$	moraine boulder	10
92-127	42.91	-109.85	2335	4	2.7	1	504000	15120	KNSTD	17.7 ± 0.5	moraine boulder	10
92-130	42.91	-109.85	2341	5	2.7	1	541000	16230	KNSTD	19.1 ± 0.6	moraine boulder	10
91-024	42.91	-109.85	2323	10	2.7	1	502000	15060	KNSTD	18.7 ± 0.6	moraine boulder	10
92-125	42.91	-109.85	2341	5	2.7	1	528000	15840	KNSTD	18.6 ± 0.6	moraine boulder	10
91-026	42.91	-109.85	2342	4	2.7	1	468000	14040	KNSTD	16.3 ± 0.5	moraine boulder	10
Erratics												
341-0	43.12	-109	3228	8.0	27	0.985	813700	24411	KNSTD	170 ± 0.5	erratic	10
242 P	42.12	100	3226	4.0	2.7	0.985	745000	22350	KNSTD	17.0 ± 0.5 15.1 ± 0.5	orratio	10
244 E	43.12	-109	3220	4.0	2.7	0.985	652000	10560	KNOID	13.1 ± 0.3	enatic	10
344-E 345-B	43.11	-109	3247	2.5 4.0	2.7	0.985	728000	21840	KNSTD	12.9 ± 0.4 14.6 ± 0.4	erratic	10
Titcomb Lakes moraine												
138-1	43.10	-109.6	3230	4	2.7	0.985	627000	18810	KNSTD	12.7 ± 0.4	moraine boulder	11
139-I	43.10	-109.6	3230	4	2.7	0.985	591000	17730	KNSTD	12.0 ± 0.4	moraine boulder	11
333-I	43.10	-109.6	3230	3	2.7	0.985	596600	17898	KNSTD	12.0 ± 0.4	moraine boulder	11
334-I	43.10	-109.6	3230	3	2.7	0.985	669700	20091	KNSTD	13.5 ± 0.4	moraine boulder	11
335-I	43.10	-109.6	3230	8	2.7	0.985	615700	18471	KNSTD	12.9 ± 0.4	moraine boulder	11
336-I	43.10	-109.6	3230	ž	27	0.985	656600	19698	KNSTD	132 ± 0.4	moraine boulder	11
337-I	43.10	-109.6	3230	9	27	0.985	624700	18741	KNSTD	13.2 ± 0.4 13.2 ± 0.4	moraine boulder	11
220 1	42.10	100.6	2220	5	2.7	0.905	625100	10741	KNOTD KNOTD	13.2 ± 0.4 12.8 ± 0.4	moraine boulder	11
330-1	43.10	-109.0	3230	5	2.1	0.20.)	023100	10/.0.0	NINOLD	12.0 ± 0.4	morane pomper	11

339-I	43.10	-109.6	3230	4	2.7	0.985	623900	18717	KNSTD	12.6 ± 0.4	moraine boulder	11
W Unitas, North Fork Prov	vo, Bear, and Bal	d Mtn, UT										
NF Provo terminal moraine	ę											
NFP-1	40.59	-111.09	2319	5	2.65	0.9997	322000	16000	KNSTD	12.1 ± 0.6	moraine boulder	12,13
NFP-2B	40.70	-111.09	2327	3	2.65	0.9997	435000	15000	KNSTD	15.9 ± 0.6	moraine boulder	12,13
NFP-3A	40.70	-111.09	2321	6	2.65	0.9997	481000	52000	KNSTD	18.1 ± 2.0	moraine boulder	12,13
NFP-4A	40.59	-111.09	2324	5	2.65	0.9990	473000	13000	NIST_Certified*	17.7 ± 0.5	moraine boulder	12,13
NFP-4B	40.59	-111.09	2324	2.5	2.65	0.9995	391000	19000	KNSTD	14.3 ± 0.7	moraine boulder	12,13
NFP-4C	40.59	-111.09	2324	3	2.65	0.9995	375000	19000	KNSTD	13.8 ± 0.7	moraine boulder	12,13
NFP-4D	40.59	-111.09	2324	3	2.65	0.9990	530000	26000	NIST_Certified*	19.5 ± 1.0	moraine boulder	12,13
NFP-5	40.59	-111.08	2346	3.5	2.65	1	446000	17000	KNSTD	16.2 ± 0.6	moraine boulder	12,13
Bald Mountain												
BMP-2	40.69	-110.9	3277	5	2.65	0.997	678000	19000	NIST_Certified*	14.1 ± 0.4	bedrock	12,13
BMP-4	40.69	-110.9	3280	4	2.65	0.997	685000	15000	NIST_Certified*	14.1 ± 0.3	bedrock	12,13
BMP-5	40.69	-110.91	3250	2.5	2.65	0.998	776000	147000	NIST_Certified*	16.0 ± 3.0	bedrock	12,13
BMP-7	40.69	-110.91	3250	3	2.65	0.998	729000	27000	NIST_Certified*	15.2 ± 0.6	bedrock	12,13

^a Reported ^mBe ages using the global production rate (4.49 ± 0.39 atoms g⁻¹ yr⁻¹; normalized to 07KNSTD) and the constanct production scaling scheme of Lal (1991)/Stone (2000). ^b depth profile consistning of multiple ¹⁰Be measurements; see source reference for details. ^c Al-26 age

NIST_Certified* - We report ¹⁰Be concentrations provided by the original authors. Before calculating ¹⁰Be ages, the original authors applied a 14% correction to ¹⁰Be/⁹Be ratios. See source references for details. References: 1-This study; 2- Schlingden, 2000; 3- Briner, 2009; 4- Guido et al., 2007; 5- Ward et al., 2009; 6- Benson et al., 2005; 7- Licciardi and Pierce, 2008; 8- Licciardi et al., 2001; 9- Licciardi et al., 2004; 10- Gosse et al., 1995a; 11- Gosse et al., 1995b; 12- Refsnider et al., 2008; 13- Laabs et al., 2009

Sample	St	De	Du	Li	St (mag)	NE Li	NE St	NE De	NE Du	NE St (mag)
Lake Creek. CO										
AR09-01	14.7 ± 0.4	14.0 ± 0.4	13.9 ± 0.4	13.6 ± 0.4	14.5 ± 0.4	14.7 ± 0.4	16.7 ± 0.4	14.9 ± 0.4	14.8 ± 0.4	16.3 ± 0.4
AR09-10	13.9 ± 0.4	13.1 ± 0.4	13.1 ± 0.4	12.7 ± 0.4	13.7 ± 0.4	13.8 ± 0.4	15.8 ± 0.4	14.0 ± 0.4	13.9 ± 0.4	15.8 ± 0.4
AR09-11	13.2 ± 0.3	12.3 ± 0.3	12.3 ± 0.3	11.9 ± 0.3	13.0 ± 0.3	12.9 ± 0.3	15.1 ± 0.3	15.1 ± 0.3	15.1 ± 0.3	15.4 ± 0.3
DC-91-2	19.7 ± 0.5	18.6 ± 0.5	18.4 ± 0.5	18.0 ± 0.5	19.2 ± 0.5	19.5 ± 0.6	22.4 ± 0.6	19.8 ± 0.6	19.5 ± 0.6	21.6 ± 0.6
Clear Creek. CO										
MF06-01	19.5 ± 0.6	18.3 ± 0.6	18.1 ± 0.6	17.8 ± 0.6	19.0 ± 0.6	19.2 ± 0.7	22.2 ± 0.7	19.5 ± 0.7	19.2 ± 0.7	21.3 ± 0.7
MF06-02	19.3 ± 0.0 19.3 ± 0.4	18.1 ± 0.4	18.0 ± 0.0	17.6 ± 0.0	18.8 ± 0.4	19.0 ± 0.7	22.0 ± 0.7	19.3 ± 0.7 19.3 + 0.5	19.2 ± 0.7 19.1 ± 0.5	21.2 ± 0.7 21.2 ± 0.5
MF06-03	21.7 ± 0.6	20.2 ± 0.6	20.0 ± 0.6	19.7 ± 0.1	210 ± 0.0	212 ± 0.6	22.0 ± 0.5 24.7 ± 0.6	215 ± 0.5	212 ± 0.6	23.6 ± 0.6
MF06-04	19.1 ± 0.0	179 ± 0.0	17.7 ± 0.0	17.7 ± 0.0 17.4 ± 0.4	186 ± 0.0	18.8 ± 0.4	21.7 ± 0.0 21.7 ± 0.4	191 ± 0.0	188 ± 0.0	20.9 ± 0.0
ME06 05	15.1 ± 0.1 15.2 ± 0.4	17.5 ± 0.1 14.4 ± 0.4	17.7 ± 0.1 14.4 ± 0.4	$1/.1 \pm 0.1$ $1/.0 \pm 0.4$	15.0 ± 0.1	15.0 ± 0.1	17.4 ± 0.1	15.1 ± 0.1 15.4 ± 0.5	15.0 ± 0.1	169 ± 0.1
AR09-03	15.2 ± 0.4 14.1 ± 0.3	13.6 ± 0.3	13.5 ± 0.3	14.0 ± 0.4 13.2 ± 0.3	15.0 ± 0.4 14.0 ± 0.3	15.2 ± 0.3 14.3 ± 0.3	17.4 ± 0.3 16.1 ± 0.3	15.4 ± 0.3 14.5 ± 0.3	13.2 ± 0.3 14.4 ± 0.3	10.9 ± 0.3 15.7 ± 0.3
Pino Crook CO										
$\frac{PC1}{PC1}$	20.9 ± 0.5	105 ± 0.5	10.3 ± 0.5	18.9 ± 0.5	20.3 ± 0.5	20.4 ± 0.6	238 ± 0.6	20.7 ± 0.6	20.5 ± 0.6	22.8 ± 0.6
PC2	135 ± 0.1	17.5 ± 0.5 12.8 ± 0.4	17.5 ± 0.5 12.8 ± 0.4	10.5 ± 0.5 12.5 ± 0.4	20.3 ± 0.3	20.4 ± 0.0 13.5 ± 0.5	15.0 ± 0.0	13.7 ± 0.5	20.5 ± 0.5	15.0 ± 0.5
DC2	15.5 ± 0.4	12.0 ± 0.4	12.0 ± 0.4	12.3 ± 0.4	15.5 ± 0.4	15.5 ± 0.5	13.4 ± 0.3 17.8 ± 0.5	15.7 ± 0.5	15.0 ± 0.5	13.0 ± 0.3 17.2 ± 0.5
PC3	13.0 ± 0.4	14.0 ± 0.4	14.7 ± 0.4	14.4 ± 0.4	13.3 ± 0.4	13.0 ± 0.3	17.0 ± 0.3	13.0 ± 0.3	13.0 ± 0.3	17.2 ± 0.3
PC4	22.4 ± 0.3	20.9 ± 0.3	20.7 ± 0.3	20.5 ± 0.5	21.7 ± 0.3	21.9 ± 0.0	23.3 ± 0.0	22.5 ± 0.0	21.9 ± 0.0	24.5 ± 0.0
PC3	24.5 ± 0.7	22.9 ± 0.7	22.0 ± 0.7	22.3 ± 0.7	23.0 ± 0.7	24.0 ± 0.8	28.0 ± 0.8	24.4 ± 0.8	24.0 ± 0.8	20.0 ± 0.8
PC6	10.0 ± 0.4	15.5 ± 0.4	15.2 ± 0.4	14.9 ± 0.4	15.8 ± 0.4	10.0 ± 0.4	18.3 ± 0.4	10.2 ± 0.4	10.1 ± 0.4	$1/./\pm 0.4$
PC7	22.8 ± 0.5	21.4 ± 0.5	21.1 ± 0.5	20.8 ± 0.5	22.1 ± 0.5	22.4 ± 0.6	26.0 ± 0.6	22.7 ± 0.6	22.4 ± 0.6	24.8 ± 0.6
PC8	21.3 ± 0.4	20.1 ± 0.4	19.8 ± 0.4	19.5 ± 0.4	20.7 ± 0.4	21.0 ± 0.5	24.3 ± 0.5	21.3 ± 0.5	21.0 ± 0.5	23.3 ± 0.5
PC9	15.4 ± 0.4	14.7 ± 0.4	14.6 ± 0.4	14.3 ± 0.4	15.1 ± 0.4	15.5 ± 0.4	17.5 ± 0.4	15.7 ± 0.4	15.5 ± 0.4	17.0 ± 0.4
PC11	15.3 ± 0.4	14.7 ± 0.4	14.6 ± 0.4	14.3 ± 0.4	15.1 ± 0.4	15.4 ± 0.4	17.5 ± 0.4	15.6 ± 0.4	15.5 ± 0.4	17.0 ± 0.4
PC12	16.2 ± 0.4	15.6 ± 0.4	15.5 ± 0.4	15.2 ± 0.4	16.0 ± 0.4	16.4 ± 0.4	18.5 ± 0.4	16.6 ± 0.4	16.4 ± 0.4	18.0 ± 0.4
PC13	16.1 ± 0.4	15.5 ± 0.4	15.4 ± 0.4	15.1 ± 0.4	15.8 ± 0.4	16.3 ± 0.4	18.4 ± 0.4	16.5 ± 0.4	16.3 ± 0.4	17.8 ± 0.4
AR09-07	15.6 ± 0.4	14.8 ± 0.4	14.7 ± 0.4	14.4 ± 0.4	15.3 ± 0.4	15.5 ± 0.5	17.7 ± 0.5	15.7 ± 0.5	15.6 ± 0.5	17.2 ± 0.5
AR09-08	15.3 ± 0.3	14.6 ± 0.3	14.5 ± 0.3	14.2 ± 0.3	15.1 ± 0.3	15.3 ± 0.4	17.5 ± 0.4	15.5 ± 0.4	15.4 ± 0.4	17.0 ± 0.4
ARK River valley, CO, Lowe	r flood terrace									
QPOY-01	17.3 ± 0.4	16.7 ± 0.4	16.6 ± 0.4	16.3 ± 0.4	17.0 ± 0.4	17.6 ± 0.5	19.7 ± 0.5	17.8 ± 0.5	17.6 ± 0.5	19.1 ± 0.5
OPOY-02	17.2 ± 0.8	16.6 ± 0.8	16.5 ± 0.8	16.2 ± 0.8	16.9 ± 0.8	17.4 ± 0.1	19.6 ± 0.1	17.7 ± 0.1	17.5 ± 0.1	19.0 ± 0.1
AR09-05	18.4 ± 0.4	17.8 ± 0.4	17.6 ± 0.4	17.3 ± 0.4	18.0 ± 0.4	18.7 ± 0.4	20.9 ± 0.4	18.9 ± 0.4	18.7 ± 0.4	20.2 ± 0.4
AR09-06	18.1 ± 0.4	17.5 ± 0.4	17.3 ± 0.4	17.0 ± 0.4	17.7 ± 0.4	18.4 ± 0.5	20.6 ± 0.5	18.6 ± 0.5	18.4 ± 0.5	19.9 ± 0.5
ARK River valley. CO. Upper	r flood terrace									
OPOO-2	19.1 ± 0.8	18.3 ± 0.8	18.2 ± 0.8	17.9 ± 0.8	18.6 ± 0.8	19.3 ± 0.9	21.8 ± 0.9	19.5 ± 0.9	19.3 ± 0.9	20.9 ± 0.9
$\overrightarrow{OPOO-4}$	20.9 ± 1.0	20.0 ± 1.0	19.8 ± 1.0	19.4 ± 1.0	20.3 ± 1.0	21.0 ± 1.1	23.8 ± 1.1	21.3 ± 1.1	21.0 ± 1.1	22.8 ± 1.1
OPOO-01	19.1 ± 0.6	18.4 ± 0.6	18.2 ± 0.6	17.9 ± 0.6	18.7 ± 0.6	19.3 ± 0.7	21.8 ± 0.7	19.6 ± 0.7	19.3 ± 0.7	21.0 ± 0.7
QPOO-03	19.3 ± 0.5	18.5 ± 0.5	18.4 ± 0.5	18.1 ± 0.5	18.9 ± 0.5	19.5 ± 0.5	22.0 ± 0.5	19.7 ± 0.5	19.5 ± 0.5	21.2 ± 0.5
Animas Vallev. CO										
Baker's Ridge	17.5 ± 0.4	17.4 ± 0.4	17.3 ± 0.4	17.0 ± 0.4	17.1 ± 0.4	18.3 ± 0.5	19.9 ± 0.5	18.5 ± 0.5	18.3 ± 0.5	19.3 ± 0.5

Table DR3. Western US cosmogenic exposure ages

Tacoma Needleton Silverton Highland Mary Lake Elk Crek	$14.6 \pm 0.5 15.3 \pm 0.4 14.3 \pm 0.4 12.6 \pm 0.5 15.6 \pm 0.4 $	$14.5 \pm 0.5 15.0 \pm 0.4 13.8 \pm 0.4 11.4 \pm 0.5 13.9 \pm 0.4$	$14.4 \pm 0.5 14.9 \pm 0.4 13.7 \pm 0.4 11.4 \pm 0.5 13.8 \pm 0.4$	$14.2 \pm 0.5 \\ 14.6 \pm 0.4 \\ 13.4 \pm 0.4 \\ 11.0 \pm 0.5 \\ 13.5 \pm 0.4$	14.4 ± 0.5 15.0 ± 0.4 14.1 ± 0.4 12.4 ± 0.5 15.2 ± 0.4	15.3 ± 0.6 15.7 ± 0.4 14.5 ± 0.4 12.0 ± 0.5 14.5 ± 0.5	16.6 ± 0.6 17.4 ± 0.4 16.3 ± 0.4 14.4 ± 0.5 17.8 ± 0.5	$15.35 \pm 0.6 \\ 15.9 \pm 0.4 \\ 14.7 \pm 0.4 \\ 12.2 \pm 0.5 \\ 14.8 \pm 0.5 \\ 14$	$15.3 \pm 0.6 \\ 15.8 \pm 0.4 \\ 14.6 \pm 0.4 \\ 12.1 \pm 0.5 \\ 14.7 \pm 0.5 \\ 14.$	$16.2 \pm 0.6 \\ 16.9 \pm 0.4 \\ 15.8 \pm 0.4 \\ 14.0 \pm 0.5 \\ 17.1 \pm 0.5 \\ 17.$
terminal outwash profile ^a	19.4 ± 1.5	NA	NA	NA	NA	NA	NA	NA	NA	NA
Middle Boulder Creek, CO										
Terminal moraine										
99-t74 ^b	17.8 ± 0.9	16.7 ± 0.9	16.6 ± 0.9	16.2 ± 0.9	17.4 ± 0.9	17.5 ± 1.9	20.3 ± 1.9	17.7 ± 1.9	17.6 ± 1.9	19.6 ± 1.9
99-t76	20.6 ± 0.5	19.2 ± 0.5	19.0 ± 0.5	18.7 ± 0.5	20.1 ± 0.5	20.2 ± 0.6	23.5 ± 0.6	20.5 ± 0.6	20.2 ± 0.6	22.6 ± 0.6
99-t76 ^b	20.5 ± 1.0	19.1 ± 1.0	18.9 ± 1.0	18.5 ± 1.0	19.9 ± 1.0	20.0 ± 1.1	23.3 ± 1.1	20.3 ± 1.1	20.1 ± 1.1	22.4 ± 1.1
MB4J-0	18.2 ± 1.7	17.5 ± 1.7	17.4 ± 1.7	17.1 ± 1.7	17.9 ± 1.7	18.4 ± 1.9	20.7 ± 1.9	18.6 ± 1.9	18.4 ± 1.9	20.1 ± 1.9
Upvalley bedrock										
33-JB-25	12.5 ± 0.4	11.7 ± 0.4	11.7 ± 0.4	11.3 ± 0.4	12.5 ± 0.4	12.3 ± 0.5	14.3 ± 0.5	12.5 ± 0.5	12.4 ± 0.5	13.9 ± 0.5
GP4J-1	13.5 ± 0.4	12.2 ± 0.4	12.2 ± 0.4	11.8 ± 0.4	13.5 ± 0.4	12.8 ± 0.5	15.4 ± 0.5	13.1 ± 0.5	13.0 ± 0.5	15.0 ± 0.5
GP4J-2	13.8 ± 0.4	12.5 ± 0.4	12.5 ± 0.4	12.1 ± 0.4	13.8 ± 0.4	13.1 ± 0.5	15.7 ± 0.5	13.4 ± 0.5	13.3 ± 0.5	15.3 ± 0.5
GP4J-3	13.6 ± 0.5	12.3 ± 0.5	12.3 ± 0.5	11.9 ± 0.5	13.6 ± 0.5	12.9 ± 0.6	15.4 ± 0.6	13.1 ± 0.6	13.0 ± 0.6	15.1 ± 0.6
GP4J-4	13.4 ± 0.4	12.2 ± 0.4	12.3 ± 0.4	11.8 ± 0.4	13.4 ± 0.4	12.8 ± 0.5	15.3 ± 0.5	13.0 ± 0.5	13.0 ± 0.5	14.9 ± 0.5
GP4J-5 CD4L6	13.2 ± 0.4	12.0 ± 0.4 12.1 + 0.5	12.0 ± 0.4	11.0 ± 0.4	13.2 ± 0.4 12.2 ± 0.5	12.0 ± 0.5 12.7 ± 0.6	15.1 ± 0.5	12.8 ± 0.5 12.0 ± 0.6	12.8 ± 0.5	14.7 ± 0.5
GP4J-0 CD4L7	13.3 ± 0.3 12.0 ± 0.4	12.1 ± 0.3	12.1 ± 0.5	11.7 ± 0.3 10.6 ± 0.4	13.3 ± 0.3 12.0 ± 0.4	12.7 ± 0.0	13.1 ± 0.0 12.7 ± 0.4	12.9 ± 0.0	12.8 ± 0.0 11.7 + 0.4	14.8 ± 0.0 12.4 ± 0.4
GP4J-7 CD4J_10	12.0 ± 0.4 12.8 ± 0.4	11.0 ± 0.4 12.2 + 0.4	10.9 ± 0.4	10.0 ± 0.4 12.8 ± 0.4	12.0 ± 0.4 12.8 + 0.4	11.3 ± 0.4 12.8 ± 0.4	15.7 ± 0.4 15.8 ± 0.4	11.7 ± 0.4 14.0 ± 0.4	11.7 ± 0.4 12.0 ± 0.4	15.4 ± 0.4 15.4 ± 0.4
GP4J-10 GP4I-11	13.0 ± 0.4 13.1 ± 0.5	13.2 ± 0.4 12.3 ± 0.5	13.1 ± 0.4 12.3 ± 0.5	12.0 ± 0.4 11.0 ± 0.5	13.8 ± 0.4 13.1 ± 0.5	13.8 ± 0.4 12.0 ± 0.5	13.6 ± 0.4 14.0 ± 0.5	14.0 ± 0.4 13.1 ± 0.5	13.9 ± 0.4 13.0 ± 0.5	13.4 ± 0.4 14.6 ± 0.5
GP4J-23	17.8 ± 0.6	12.5 ± 0.5 17.0 ± 0.6	12.5 ± 0.5 16.9 ± 0.6	16.6 ± 0.6	17.8 ± 0.6	12.9 ± 0.5 17.9 ± 0.7	14.9 ± 0.3 20.3 ± 0.7	13.1 ± 0.3 18.1 ± 0.7	17.9 ± 0.7	14.0 ± 0.3 19.7 ± 0.7
· · · · · · · · · · · · · · · · · · ·										
<u>Jenny Lake, WY</u> Outer Jenny Lake moraine										
OIEN-1	141 + 03	141 + 03	14.1 ± 0.3	137 ± 03	140 ± 03	148 ± 03	160 ± 03	150 ± 03	149 ± 03	158 ± 03
OJEN-2	15.0 ± 0.3	15.0 ± 0.4	15.0 ± 0.3	14.6 ± 0.4	14.9 ± 0.4	15.7 ± 0.4	17.1 ± 0.4	15.9 ± 0.4	15.9 ± 0.3	16.8 ± 0.4
OJEN-3	13.4 ± 0.3	13.4 ± 0.3	13.4 ± 0.3	13.1 ± 0.3	13.3 ± 0.3	14.1 ± 0.4	15.2 ± 0.4	14.3 ± 0.4	14.2 ± 0.4	15.1 ± 0.4
OJEN-5	14.4 ± 0.3	14.4 ± 03	14.3 ± 03	14.0 ± 03	14.3 ± 03	15.1 ± 0.4	16.4 ± 0.4	15.3 ± 0.4	15.2 ± 0.4	16.1 ± 0.4
OJEN-6	15.4 ± 0.4	15.3 ± 0.4	15.3 ± 0.4	15.0 ± 0.4	15.3 ± 0.4	16.1 ± 0.4	17.5 ± 0.4	16.3 ± 0.4	16.3 ± 0.4	17.2 ± 0.4
OJEN-7	15.1 ± 0.4	15.1 ± 0.4	15.1 ± 0.4	14.7 ± 0.4	15.0 ± 0.4	15.9 ± 0.4	17.2 ± 0.4	16.1 ± 0.4	16.0 ± 0.4	16.9 ± 0.4
OJEN-8	14.4 ± 0.4	14.5 ± 0.4	14.4 ± 0.4	14.1 ± 0.4	14.4 ± 0.4	15.2 ± 0.4	16.5 ± 0.4	15.4 ± 0.4	15.3 ± 0.4	16.2 ± 0.4
OJEN-9	15.3 ± 0.4	15.2 ± 0.4	15.2 ± 0.4	14.9 ± 0.4	15.2 ± 0.4	16.0 ± 0.4	17.4 ± 0.4	16.2 ± 0.4	16.2 ± 0.4	17.1 ± 0.4
OJEN-10	13.5 ± 0.3	13.5 ± 0.3	13.5 ± 0.3	13.1 ± 0.3	13.4 ± 0.3	14.2 ± 0.4	15.3 ± 0.4	14.4 ± 0.4	14.3 ± 0.4	15.1 ± 0.4
OJEN-11	15.0 ± 0.6	15.0 ± 0.6	15.0 ± 0.6	14.6 ± 0.6	14.9 ± 0.6	15.8 ± 0.6	17.1 ± 0.6	16.0 ± 0.6	15.9 ± 0.6	16.8 ± 0.6
Inner Jenny Lake moraine										
IJEN-1	13.2 ± 0.3	13.3 ± 0.3	13.2 ± 0.3	12.9 ± 0.3	13.2 ± 0.3	14.0 ± 0.4	15.0 ± 0.4	14.1 ± 0.4	14.1 ± 0.4	14.9 ± 0.4
IJEN-2	12.6 ± 0.4	12.7 ± 0.4	12.7 ± 0.4	12.3 ± 0.4	12.6 ± 0.4	13.3 ± 0.4	14.4 ± 0.4	13.5 ± 0.4	13.5 ± 0.4	14.2 ± 0.4
IJEN-3	14.0 ± 0.3	14.0 ± 0.3	14.0 ± 0.3	13.7 ± 0.3	14.0 ± 0.3	14.8 ± 0.4	16.0 ± 0.4	14.9 ± 0.4	14.9 ± 0.4	15.7 ± 0.4
IJEN-5	11.7 ± 0.3	11.7 ± 0.3	11.7 ± 0.3	11.4 ± 0.3	11.6 ± 0.3	12.3 ± 0.4	13.3 ± 0.4	12.5 ± 0.4	12.4 ± 0.4	13.1 ± 0.4
IJEN-6	14.2 ± 0.2	14.2 ± 0.2	14.2 ± 0.2	13.8 ± 0.2	14.1 ± 0.2	15.0 ± 0.4	16.2 ± 0.4	15.1 ± 0.4	15.1 ± 0.4	15.9 ± 0.4
IJEN-7	12.9 ± 0.3	13.0 ± 0.3	13.0 ± 0.3	12.6 ± 0.6	12.9 ± 0.3	13.7 ± 0.4	14.7 ± 0.4	13.8 ± 0.4	13.8 ± 0.4	14.6 ± 0.4

IJEN-11	15.0 ± 0.4	15.0 ± 0.4	15.0 ± 0.4	14.6 ± 0.4	15.0 ± 0.4	15.8 ± 0.4	17.1 ± 0.4	16.0 ± 0.4	15.9 ± 0.4	16.8 ± 0.4
IJEN-13	14.2 ± 0.3	14.2 ± 0.3	14.2 ± 0.3	13.8 ± 0.3	14.2 ± 0.3	14.9 ± 0.4	16.2 ± 0.4	15.1 ± 0.4	15.1 ± 0.4	15.9 ± 0.4
Unvalley										
BED 1	138 ± 0.3	13.4 ± 0.3	13.4 ± 0.3	13.0 ± 0.3	13.7 ± 0.3	14.1 ± 0.4	15.7 ± 0.4	143 ± 0.4	14.2 ± 0.4	15.5 ± 0.4
BED-1 BED 2	13.0 ± 0.3 14.8 ± 0.3	13.4 ± 0.3 14.7 ± 0.3	13.4 ± 0.3 14.7 ± 0.3	13.0 ± 0.3 14.3 ± 0.3	13.7 ± 0.3 14.7 ± 0.3	14.1 ± 0.4 15.4 ± 0.3	15.7 ± 0.4 16.8 ± 0.3	14.3 ± 0.4 15.6 ± 0.3	14.2 ± 0.4 15.6 ± 0.3	15.5 ± 0.4 16.6 ± 0.3
	14.0 ± 0.3 12.5 ± 0.2	14.7 ± 0.3 12.0 ± 0.3	14.7 ± 0.3 12.0 ± 0.2	14.5 ± 0.3 11.6 ± 0.2	14.7 ± 0.3 12.4 ± 0.2	13.4 ± 0.3 12.6 ± 0.2	10.0 ± 0.3 14.2 ± 0.3	13.0 ± 0.3 12.8 ± 0.2	13.0 ± 0.3 12.7 ± 0.2	10.0 ± 0.3 14.0 ± 0.2
	12.3 ± 0.3 12.5 ± 0.2	12.0 ± 0.3 12.0 ± 0.2	12.0 ± 0.3 12.0 ± 0.3	11.0 ± 0.3 12.6 ± 0.2	12.4 ± 0.3 12.4 ± 0.2	12.0 ± 0.3 12.6 ± 0.5	14.2 ± 0.3 15.4 ± 0.5	12.0 ± 0.3 12.8 ± 0.5	12.7 ± 0.3 12.8 ± 0.5	14.0 ± 0.3 15.2 ± 0.5
	13.3 ± 0.3	13.0 ± 0.3	13.0 ± 0.3	12.0 ± 0.3	13.4 ± 0.3 12.2 ± 0.2	13.0 ± 0.3 12.5 ± 0.2	13.4 ± 0.3	13.0 ± 0.3 12.7 ± 0.2	13.0 ± 0.3	13.2 ± 0.3 12.0 ± 0.2
L3-0	12.5 ± 0.5	11.9 ± 0.5	11.9 ± 0.3	11.3 ± 0.3	12.3 ± 0.3	12.3 ± 0.3	14.1 ± 0.3	12.7 ± 0.5	12.0 ± 0.5	13.9 ± 0.3
<u>NW Yellowstone, MT, WY</u>										
Eightmile terminal moraine										
8-B2	14.8 ± 1.0	15.2 ± 1.0	15.3 ± 1.0	14.8 ± 1.0	14.9 ± 1.0	16.0 ± 1.1	16.9 ± 1.1	16.2 ± 1.1	16.2 ± 1.1	16.7 ± 1.1
8-D1	16.0 ± 0.9	16.5 ± 0.9	16.5 ± 0.9	16.0 ± 0.9	16.0 ± 0.9	17.3 ± 1.0	18.3 ± 1.0	17.5 ± 1.0	17.5 ± 1.0	18.1 ± 1.0
8-F2	17.6 ± 1.6	18.0 ± 1.6	18.0 ± 1.6	17.5 ± 1.6	17.5 ± 1.6	18.9 ± 1.8	20.0 ± 1.8	19.1 ± 1.8	19.1 ± 1.8	19.8 ± 1.8
8-G2	192 ± 16	19.6 ± 1.6	19.6 ± 1.6	19.1 ± 1.6	19.1 ± 1.6	20.6 ± 1.8	219 ± 18	20.9 ± 1.8	20.9 ± 1.8	215 ± 18
8-11&12	16.5 ± 0.7	17.0 ± 0.7	17.0 ± 0.7	16.5 ± 0.7	16.5 ± 0.7	17.8 ± 0.8	18.8 ± 0.8	18.1 ± 0.8	18.0 ± 0.8	18.6 ± 0.8
8-11&12	17.0 ± 1.4	17.6 ± 0.0 17.4 ± 1.4	17.6 ± 0.0 17.4 ± 1.4	179 ± 14	16.9 ± 1.4	183 ± 16	193 ± 16	185 ± 16	18.5 ± 1.6	191 + 16
8-K1	169 ± 0.6	17.3 ± 0.6	173 ± 0.6	169 ± 0.6	169 ± 0.6	182 ± 07	192 ± 07	184 ± 0.7	18.4 ± 0.7	190 ± 07
8-L1&L2	15.6 ± 0.7	16.0 ± 0.7	16.0 ± 0.7	15.6 ± 0.7	15.6 ± 0.7	16.8 ± 0.8	17.7 ± 0.8	17.0 ± 0.8	17.0 ± 0.8	17.5 ± 0.8
8-M2	15.9 ± 0.6	16.3 ± 0.6	16.4 ± 0.6	15.9 ± 0.6	15.9 ± 0.6	17.2 ± 0.7	18.1 ± 0.7	17.4 ± 0.7	17.4 ± 0.7	17.9 ± 0.7
Chico moraines	14.2 1.0	147 10	147 10	140 10	14.2 1.2	15 4 1 4	160 11	15 (11	15 6 1 1	161 11
CH-IA CH-2A	14.3 ± 1.2	14.7 ± 1.2	$14./\pm 1.2$	14.3 ± 1.2	14.3 ± 1.2	15.4 ± 1.4	16.3 ± 1.1	15.6 ± 1.1	15.6 ± 1.1	16.1 ± 1.1
CH-2A	15.5 ± 1.0	15.9 ± 1.0	15.9 ± 1.0	15.5 ± 1.0	15.5 ± 1.0	$16./\pm1.1$	$1/./\pm 1.0$	16.9 ± 1.0	16.9 ± 1.0	$1/.5 \pm 1.0$
CH-3B	15.8 ± 1.4	16.1 ± 1.4	16.1 ± 1.4	$15./\pm 1.4$	15.7 ± 1.4	16.9 ± 1.6	18.0 ± 1.8	$1/.1 \pm 1.8$	$1/.1 \pm 1.8$	$1/./\pm 1.8$
CH-6A	14.3 ± 1.2	14.7 ± 1.2	14.7 ± 1.2	14.4 ± 1.2	14.4 ± 1.2	15.5 ± 1.4	16.3 ± 1.8	15.7 ± 1.8	$15./\pm1.8$	16.2 ± 1.8
CH-6B	13.5 ± 1.5	13.8 ± 1.5	13.9 ± 1.5	13.5 ± 1.5	13.5 ± 1.5	14.6 ± 1.7	15.3 ± 0.8	14.7 ± 0.8	14.7 ± 0.8	15.2 ± 0.8
CH-8A	17.6 ± 1.0	18.0 ± 1.0	18.0 ± 1.0	17.5 ± 1.0	17.6 ± 1.0	18.9 ± 1.2	20.1 ± 1.6	19.1 ± 1.6	19.1 ± 1.6	19.8 ± 1.6
CH-9B	16.8 ± 1.2	17.2 ± 1.2	17.2 ± 1.2	16.7 ± 1.2	16.78 ± 1.2	18.0 ± 1.3	19.1 ± 0.7	18.3 ± 0.7	18.3 ± 0.7	18.3 ± 0.7
CH-10B	18.8 ± 1.1	19.2 ± 1.1	19.2 ± 1.1	18.7 ± 1.1	18.7 ± 1.1	20.1 ± 1.2	21.4 ± 0.8	20.4 ± 0.8	20.4 ± 0.8	21.1 ± 0.8
CH-11B	16.0 ± 0.8	16.4 ± 0.8	16.4 ± 0.8	16.0 ± 0.8	16.0 ± 0.8	17.2 ± 0.9	18.2 ± 0.7	17.4 ± 0.7	17.4 ± 0.7	18.0 ± 0.7
Deckards Flats moraine										
DF-1A	14.0 ± 0.6	14.3 ± 0.6	14.3 ± 0.6	13.9 ± 0.6	14.1 ± 0.6	15.0 ± 0.7	16.0 ± 0.7	15.2 ± 0.7	15.2 ± 0.7	15.8 ± 0.7
DF-2B	12.8 ± 1.2	13.0 ± 1.2	13.0 ± 1.2	12.7 ± 1.2	12.8 ± 1.2	13.8 ± 1.4	14.6 ± 1.4	13.9 ± 1.4	13.9 ± 1.4	14.5 ± 1.4
DF-3B	13.4 ± 0.9	13.6 ± 0.9	13.7 ± 0.9	13.3 ± 0.9	13.4 ± 0.9	14.4 ± 1.0	15.3 ± 1.0	14.5 ± 1.0	14.5 ± 1.0	15.1 ± 1.0
DF-4A	12.6 ± 1.1	12.9 ± 1.1	12.9 ± 1.1	12.6 ± 1.1	12.7 ± 1.1	13.6 ± 1.2	14.4 ± 1.2	13.7 ± 1.2	13.7 ± 1.2	14.3 ± 1.2
DF-5B	16.3 ± 0.7	16.5 ± 0.7	16.5 ± 0.7	16.1 ± 0.7	16.3 ± 0.7	17.4 ± 0.8	18.6 ± 0.8	17.6 ± 0.8	17.6 ± 0.8	18.3 ± 0.8
DF-6A	13.7 ± 0.7	13.9 ± 0.7	13.9 ± 0.7	13.5 ± 0.7	13.7 ± 0.7	14.6 ± 0.8	15.5 ± 0.8	14.8 ± 0.8	14.8 ± 0.8	15.4 ± 0.8
DF-6B	15.1 ± 1.1	15.3 ± 1.1	15.3 ± 1.1	15.0 ± 1.1	15.1 ± 1.1	16.1 ± 1.3	17.2 ± 1.3	16.3 ± 1.3	16.3 ± 1.3	17.0 ± 1.3
DF-7A	14.5 ± 0.8	14.8 ± 0.8	14.8 ± 0.8	14.4 ± 0.8	14.5 ± 0.8	15.5 ± 0.9	16.5 ± 0.9	15.7 ± 0.9	15.7 ± 0.9	16.4 ± 0.9
DF-8A	15.3 ± 0.9	15.5 ± 0.9	15.5 ± 0.9	15.1 ± 0.9	15.3 ± 0.9	16.3 ± 1.0	17.4 ± 1.0	16.5 ± 1.0	16.5 ± 1.0	17.2 ± 1.0
DF-9B	13.4 ± 0.5	13.6 ± 0.5	13.6 ± 0.5	13.3 ± 0.5	13.4 ± 0.5	14.3 ± 0.6	15.2 ± 0.6	14.5 ± 0.6	14.5 ± 0.6	15.1 ± 0.6
DF-10A	15.2 ± 1.9	15.5 ± 1.9	15.5 ± 1.9	15.1 ± 1.9	15.2 ± 1.9	16.3 ± 2.1	17.4 ± 2.1	16.5 ± 2.1	16.4 ± 2.1	17.2 ± 2.1

Junction Butte moraine

JB-1 JB-2 JB-4 JB-7 JB-8 JB-11	$\begin{array}{c} 14.7 \pm 0.3 \\ 14.3 \pm 0.3 \\ 14.1 \pm 0.3 \\ 14.2 \pm 0.3 \\ 13.0 \pm 0.4 \\ 14.4 \pm 0.4 \end{array}$	14.8 ± 0.3 14.5 ± 0.3 14.3 ± 0.3 14.4 ± 0.3 13.2 ± 0.4 14.5 ± 0.4	$\begin{array}{c} 14.7 \pm 0.3 \\ 14.3 \pm 0.3 \\ 14.1 \pm 0.3 \\ 14.2 \pm 0.3 \\ 13.0 \pm 0.4 \\ 14.4 \pm 0.4 \end{array}$	14.7 ± 0.3 14.3 ± 0.3 14.1 ± 0.3 14.2 ± 0.3 13.0 ± 0.4 14.4 ± 0.4	$14.7 \pm 0.3 \\ 14.3 \pm 0.3 \\ 14.1 \pm 0.3 \\ 14.2 \pm 0.3 \\ 13.0 \pm 0.4 \\ 14.4 \pm 0.4$	$15.5 \pm 0.4 \\ 15.2 \pm 0.4 \\ 15.0 \pm 0.3 \\ 15.1 \pm 0.4 \\ 13.8 \pm 0.4 \\ 15.3 \pm 0.4$	$\begin{array}{c} 16.7 \pm 0.4 \\ 16.3 \pm 0.4 \\ 16.1 \pm 0.3 \\ 16.2 \pm 0.4 \\ 14.8 \pm 0.4 \\ 16.4 \pm 0.4 \end{array}$	$15.7 \pm 0.4 \\ 15.4 \pm 0.4 \\ 15.2 \pm 0.3 \\ 15.3 \pm 0.4 \\ 14.0 \pm 0.4 \\ 15.5 \pm 0.4$	$15.7 \pm 0.4 \\ 15.4 \pm 0.4 \\ 15.2 \pm 0.3 \\ 15.3 \pm 0.4 \\ 14.0 \pm 0.4 \\ 15.5 \pm 0.4$	$16.5 \pm 0.4 \\ 16.1 \pm 0.4 \\ 15.9 \pm 0.3 \\ 16.0 \pm 0.4 \\ 14.7 \pm 0.4 \\ 16.2 \pm 0.4$
<u>Wallowa, OR</u>										
TTO terminal moraine										
TTO-2B	21.0 ± 0.9	21.4 ± 0.9	21.4 ± 0.9	20.8 ± 0.9	20.8 ± 0.9	22.5 ± 1.1	23.9 ± 1.1	22.8 ± 1.1	22.8 ± 1.1	23.5 ± 1.1
110-3B TTO-7A	21.7 ± 0.7 21.7 ± 1.6	22.1 ± 0.7 22.1 ± 1.6	22.1 ± 0.7 22.1 ± 1.6	21.5 ± 0.7 21.5 ± 1.6	21.5 ± 0.7 21.5 ± 1.6	23.2 ± 0.8 23.2 ± 1.8	24.7 ± 0.8 24.7 ± 1.8	23.5 ± 0.8 23.5 ± 1.8	23.5 ± 0.8 23.5 ± 1.8	24.2 ± 0.8 24.3 ± 1.8
TTO-9B	20.7 ± 1.0 20.7 ± 1.2	21.1 ± 1.0 21.1 ± 1.2	21.2 ± 1.2	20.6 ± 1.2	20.6 ± 1.0	22.2 ± 1.3 22.2 ± 1.3	23.6 ± 1.3	22.5 ± 1.3 22.5 ± 1.3	23.5 ± 1.3 22.5 ± 1.3	23.2 ± 1.3
TTO-10B	23.1 ± 1.4	23.5 ± 1.4	23.5 ± 1.4	22.8 ± 1.4	23.9 ± 1.4	24.6 ± 1.6	26.3 ± 1.6	25.0 ± 1.6	25.0 ± 1.6	25.7 ± 1.6
TTO-11A	22.3 ± 1.3	22.8 ± 1.3	22.8 ± 1.3	22.2 ± 1.3	22.1 ± 1.3	23.9 ± 1.4	25.4 ± 1.4	24.2 ± 1.4	24.2 ± 1.4	24.9 ± 1.4
TTY end moraine										
TTY-1B	16.7 ± 1.0	17.2 ± 1.0	17.2 ± 1.0	16.7 ± 1.0	16.7 ± 1.0	18.0 ± 1.2	19.1 ± 1.2	18.3 ± 1.2	18.3 ± 1.2	18.8 ± 1.2
TTY-3B	17.0 ± 1.4	17.5 ± 1.4	17.5 ± 1.4	17.0 ± 1.4	17.0 ± 1.4	18.4 ± 1.6	19.4 ± 1.6	18.6 ± 1.6	18.6 ± 1.6	19.2 ± 1.6
111-0A TTV 8A	10.0 ± 1.2 21.7 ± 1.6	17.0 ± 1.2 22.1 ± 1.6	17.0 ± 1.2 22.2 ± 1.6	10.0 ± 1.2 21.6 ± 1.6	10.5 ± 1.2 21.6 ± 1.6	$1/.9 \pm 1.4$ 23.2 ± 1.8	18.9 ± 1.4 24.7 ± 1.8	18.1 ± 1.4 23.6 ± 1.8	18.1 ± 1.4 23.6 ± 1.8	18.0 ± 1.4 24.3 ± 1.8
TTY-10B	21.7 ± 1.0 20.9 ± 1.4	22.1 ± 1.0 21.4 ± 1.4	22.2 ± 1.0 214 + 14	21.0 ± 1.0 20.8 ± 1.4	21.0 ± 1.0 20.8 + 1.4	23.2 ± 1.8 22.4 ± 1.6	24.7 ± 1.0 23.8 ± 1.8	23.0 ± 1.0 22.7 ± 1.6	23.0 ± 1.8 22.7 ± 1.6	24.5 ± 1.8 23.4 ± 1.8
TTY-12B	20.6 ± 1.1	21.0 ± 1.1	21.0 ± 1.1	20.0 ± 1.1 20.4 ± 1.1	20.0 ± 1.1 20.4 ± 1.1	22.1 ± 1.0 22.1 ± 1.3	23.4 ± 1.3	22.3 ± 1.3	22.3 ± 1.3	23.0 ± 1.3
TTY-13B	16.9 ± 0.7	17.4 ± 0.7	17.5 ± 0.7	17.0 ± 0.7	16.9 ± 0.7	18.4 ± 0.8	19.3 ± 0.8	18.6 ± 0.8	18.6 ± 0.8	19.1 ± 0.8
WTO end moraine										
WTO-1B	17.7 ± 0.8	18.2 ± 0.8	18.2 ± 0.8	17.7 ± 0.8	17.7 ± 0.8	19.1 ± 1.0	20.1 ± 1.0	19.3 ± 1.0	19.3 ± 1.0	19.9 ± 1.0
WTO-1C	18.8 ± 0.8	19.3 ± 0.8	19.4 ± 0.8	18.8 ± 0.8	18.8 ± 0.8	20.3 ± 1.0	21.5 ± 1.0	20.6 ± 1.0	20.6 ± 1.0	21.2 ± 1.0
WTO-3B	16.0 ± 0.9	16.5 ± 0.9	16.6 ± 0.9	16.1 ± 0.9	16.1 ± 0.9	17.4 ± 1.0	18.3 ± 1.0	17.6 ± 1.0	17.6 ± 1.0	18.1 ± 1.0
WTO-4A	18.1 ± 0.8	18.6 ± 0.8	18.6 ± 0.8	18.1 ± 0.8	18.1 ± 0.8	19.5 ± 0.9	20.6 ± 0.9	19.8 ± 0.9	19.8 ± 0.9	20.3 ± 0.9
WIO-5A WTO OB	17.2 ± 0.6	17.7 ± 0.6	17.8 ± 0.6	17.3 ± 0.6	17.2 ± 0.6	18.7 ± 0.7	19.6 ± 0.7	18.9 ± 0.7	18.9 ± 0.7	19.4 ± 0.7
W 10-9D	10.3 ± 1.0	17.1 ± 1.0	17.1 ± 1.0	10.7 ± 1.0	10.3 ± 1.0	18.0 ± 1.2	10.0 ± 1.2	16.2 ± 1.2	16.2 ± 1.2	16.0 ± 1.2
Glacier Lake moraine										
GL-1	10.5 ± 0.4	10.3 ± 0.4	10.4 ± 0.4	10.0 ± 0.4	10.5 ± 0.4	10.8 ± 0.5	12.0 ± 0.5	11.0 ± 0.5	11.0 ± 0.5	11.9 ± 0.5
GL-3	8.7 ± 0.3	8.6 ± 0.3	8.6 ± 0.3	8.3 ± 0.3	8.7 ± 0.3	9.0 ± 0.4	9.9 ± 0.4	9.2 ± 0.4	9.2 ± 0.4	9.8 ± 0.4
GL-5 CL-5C	9.5 ± 0.6 10.2 ± 0.6	9.4 ± 0.0	9.4 ± 0.6	9.0 ± 0.0 9.7 ± 0.6	9.5 ± 0.0 10.2 ± 0.6	9.8 ± 0.7	10.8 ± 0.7 11.6 ± 0.6	10.0 ± 0.7 10.7 ± 0.6	10.0 ± 0.7 10.7 ± 0.6	10.7 ± 0.7
GL-5C GL-6C	10.2 ± 0.0 12.4 ± 1.0	10.1 ± 0.0 12.2 ± 1.0	10.1 ± 0.0 12.2 ± 1.0	9.7 ± 0.0 11.8 + 1.0	10.2 ± 0.0 12.4 ± 1.0	10.5 ± 0.0 12.8 ± 1.2	11.0 ± 0.0 14.1 + 1.2	10.7 ± 0.0 13.0 ± 1.2	10.7 ± 0.0 13.0 ± 1.2	11.5 ± 0.0 14.0 ± 1.2
GL-7B	10.2 ± 0.6	10.0 ± 0.6	10.1 ± 0.6	9.7 ± 0.6	10.2 ± 0.6	10.5 ± 0.6	11.6 ± 0.6	10.0 ± 1.2 10.7 ± 0.6	10.7 ± 0.6	11.5 ± 0.6
Gl-7C	10.0 ± 0.9	9.8 ± 0.9	9.9 ± 0.9	9.5 ± 0.9	10.0 ± 0.9	10.3 ± 1.1	11.4 ± 1.1	10.5 ± 1.1	10.5 ± 1.1	11.3 ± 1.1
<u>Fremont/Titcomb, WRR, Wyn</u>	noing_									
Fremont terminal moraine										
92-108-1	24.3 ± 0.7	23.6 ± 0.7	23.5 ± 0.7	23.0 ± 0.7	23.8 ± 0.7	24.7 ± 0.8	27.8 ± 0.8	25.1 ± 0.8	24.9 ± 0.8	26.8 ± 0.8
91-032	24.7 ± 0.7	23.9 ± 0.7	23.7 ± 0.7	23.2 ± 0.7	24.1 ± 0.7	25.0 ± 0.9	28.1 ± 0.9	25.4 ± 0.9	25.2 ± 0.9	27.1 ± 0.9

91-35	22.7 ± 0.7	22.1 ± 0.7	22.0 ± 0.7	21.5 ± 0.7	22.2 ± 0.7	23.2 ± 0.8	25.9 ± 0.8	23.5 ± 0.8	23.3 ± 0.8	25.0 ± 0.8
Soda Lake morain	e									
91-00	20.5 ± 0.6	20.1 ± 0.6	20.0 ± 0.6	19.5 ± 0.6	20.2 ± 0.6	21.1 ± 0.7	23.4 ± 0.7	21.3 ± 0.7	21.2 ± 0.7	22.7 ± 0.7
91-004	24.7 ± 0.7	23.9 ± 0.7	23.8 ± 0.7	23.3 ± 0.7	24.1 ± 0.7	25.1 ± 0.9	28.1 ± 0.9	25.4 ± 0.9	25.3 ± 0.9	27.1 ± 0.9
Half Moon morai	10									
92_11	$7 221 \pm 0.7$	215 ± 0.7	214 ± 07	20.9 ± 0.7	21.7 ± 0.7	225 ± 0.8	252 + 08	228 ± 0.8	22.7 ± 0.8	24.4 ± 0.8
92-11	22.1 ± 0.7	21.3 ± 0.7 21.2 ± 0.7	21.4 ± 0.7 21.1 ± 0.7	20.9 ± 0.7 20.6 ± 0.7	21.7 ± 0.7 21.4 ± 0.7	22.3 ± 0.8 22.3 ± 0.8	23.2 ± 0.0 24.9 ± 0.8	22.0 ± 0.0 22.6 ± 0.8	22.7 ± 0.0 22.4 ± 0.8	24.4 ± 0.8 24.1 ± 0.8
2 11.	21.0 ± 0.7	21.2 ± 0.7	21.1 ± 0.7	20.0 ± 0.7	21.1 ± 0.7	22.5 ± 0.0	21.9 ± 0.0	22.0 ± 0.0	22.1 ± 0.0	21.1 ± 0.0
Recessional mora	ines									
92-123	18.2 ± 0.5	17.7 ± 0.5	17.7 ± 0.5	17.3 ± 0.5	17.9 ± 0.5	18.6 ± 0.6	20.7 ± 0.6	18.9 ± 0.6	18.8 ± 0.6	20.2 ± 0.6
92-15	$5 18.1 \pm 0.5$	17.6 ± 0.5	17.5 ± 0.5	17.2 ± 0.5	17.8 ± 0.5	18.5 ± 0.6	20.6 ± 0.6	18.8 ± 0.6	18.6 ± 0.6	20.1 ± 0.6
92-129	$9 19.1 \pm 0.6$	18.6 ± 0.6	18.5 ± 0.6	18.1 ± 0.6	18.9 ± 0.6	19.6 ± 0.7	21.8 ± 0.7	19.8 ± 0.7	19.7 ± 0.7	21.3 ± 0.7
92-124	17.8 ± 0.5	17.4 ± 0.5	17.3 ± 0.5	16.9 ± 0.5	17.5 ± 0.5	18.3 ± 0.6	20.3 ± 0.6	18.5 ± 0.6	18.4 ± 0.6	19.8 ± 0.6
91-020) 17.6 ± 0.5	17.2 ± 0.5	17.1 ± 0.5	16.8 ± 0.5	17.4 ± 0.5	18.1 ± 0.6	20.1 ± 0.6	18.3 ± 0.6	18.2 ± 0.6	19.6 ± 0.6
92-12	7 17.7 ± 0.5	17.3 ± 0.5	17.2 ± 0.5	16.9 ± 0.5	17.5 ± 0.5	18.2 ± 0.6	20.2 ± 0.6	18.4 ± 0.6	18.3 ± 0.6	19.7 ± 0.6
92-130) 19.1 ± 0.6	18.6 ± 0.6	18.5 ± 0.6	18.1 ± 0.6	18.8 ± 0.6	19.6 ± 0.7	21.7 ± 0.7	19.8 ± 0.7	19.7 ± 0.7	21.2 ± 0.7
91-024	18.7 ± 0.6	18.2 ± 0.6	18.2 ± 0.6	17.8 ± 0.6	18.4 ± 0.6	19.2 ± 0.6	21.3 ± 0.6	19.4 ± 0.6	19.3 ± 0.6	20.7 ± 0.6
92-12	$5 18.6 \pm 0.6$	18.2 ± 0.6	18.1 ± 0.6	17.7 ± 0.6	18.3 ± 0.6	19.1 ± 0.6	21.2 ± 0.6	19.4 ± 0.6	19.2 ± 0.6	20.7 ± 0.6
91-020	16.3 ± 0.5	16.0 ± 0.5	16.0 ± 0.5	15.6 ± 0.5	16.2 ± 0.5	16.9 ± 0.6	18.6 ± 0.6	17.1 ± 0.6	17.0 ± 0.6	18.2 ± 0.6
Frratio	· c									
341-0	170 ± 0.5	157 ± 05	156 ± 0.5	153 ± 05	168 ± 0.5	165 ± 0.6	194 ± 0.6	167 ± 0.6	166 ± 0.6	189 ± 0.6
343-B	17.0 ± 0.5 15.1 ± 0.5	14.0 ± 0.5	13.0 ± 0.5 13.9 ± 0.5	13.5 ± 0.5 13.6 ± 0.5	14.9 ± 0.5	10.5 ± 0.5 14.7 ± 0.5	17.1 ± 0.0 17.2 ± 0.5	14.9 ± 0.5	14.8 ± 0.5	16.9 ± 0.0 16.8 ± 0.5
347 E	13.1 ± 0.5 12.9 ± 0.4	17.0 ± 0.5 12.0 ± 0.4	13.9 ± 0.3 11.9 ± 0.4	13.0 ± 0.3 11.6 ± 0.4	17.9 ± 0.3 12.8 ± 0.4	14.7 ± 0.5 12.5 ± 0.4	17.2 ± 0.3 14.7 ± 0.4	17.9 ± 0.3 12.8 ± 0.4	14.0 ± 0.5 12.7 ± 0.4	10.0 ± 0.5 14.4 ± 0.4
345-B	12.9 ± 0.4 14 6 + 0 4	12.0 ± 0.4 13.5 ± 0.4	11.9 ± 0.4 13.4 ± 0.4	11.0 ± 0.4 13.1 ± 0.4	12.3 ± 0.4 14.4 ± 0.4	12.5 ± 0.4 14.2 ± 0.5	14.7 ± 0.4 16.6 ± 0.5	12.0 ± 0.4 14.4 ± 0.5	12.7 ± 0.4 143+05	14.4 ± 0.4 16.3 ± 0.5
515 1	11.0 ± 0.1	10.0 ± 011	15.1 ± 0.1	10.1 ± 0.1	1111 ± 011	11.2 ± 0.5	10.0 ± 0.5	1111 ± 0.5	11.5 ± 0.5	10.5 ± 0.5
Titcomb Lakes me	oraine									
138-I	12.7 ± 0.4	12.4 ± 0.4	14.5 ± 0.4	12.6 ± 0.4	12.5 ± 0.4	14.2 ± 0.4				
139-I	12.0 ± 0.4	11.7 ± 0.4	13.6 ± 0.4	11.9 ± 0.4	11.8 ± 0.4	13.4 ± 0.4				
333-I	12.0 ± 0.4	11.7 ± 0.4	13.7 ± 0.4	11.9 ± 0.4	11.8 ± 0.4	13.4 ± 0.4				
334-I	13.5 ± 0.4	13.1 ± 0.5	15.3 ± 0.5	13.3 ± 0.5	13.8 ± 0.5	15.1 ± 0.5				
335-I	12.9 ± 0.4	12.6 ± 0.4	14.7 ± 0.4	12.8 ± 0.4	12.7 ± 0.4	14.4 ± 0.4				
336-I	13.2 ± 0.4	12.8 ± 0.5	15.0 ± 0.5	13.1 ± 0.5	13.0 ± 0.5	14.8 ± 0.5				
337-I	13.2 ± 0.4	12.8 ± 0.5	15.0 ± 0.5	13.1 ± 0.5	13.0 ± 0.5	14.8 ± 0.5				
338-I	12.8 ± 0.4	12.4 ± 0.4	14.6 ± 0.4	12.7 ± 0.4	12.6 ± 0.4	14.3 ± 0.4				
339-I	12.6 ± 0.4	12.6 ± 0.4	12.6 ± 0.4	12.6 ± 0.4	12.6 ± 0.4	12.3 ± 0.4	14.4 ± 0.4	12.5 ± 0.4	12.5 ± 0.4	14.2 ± 0.4
W Unitas, North	Fork Provo, Bear, and Bald	Mtn, UT								
NF Provo termin	al moraine									
NFP-1	12.1 ± 0.6	12.0 ± 0.6	12.0 ± 0.6	11.7 ± 0.6	12.0 ± 0.6	12.6 ± 0.7	13.7 ± 0.7	12.8 ± 0.7	12.7 ± 0.7	13.7 ± 0.7
NFP-2	B 15.9 ± 0.6	15.7 ± 0.6	15.6 ± 0.6	15.3 ± 0.6	15.8 ± 0.6	16.5 ± 0.6	18.2 ± 0.6	16.7 ± 0.6	16.6 ± 0.6	17.7 ± 0.6
NFP-3	A 18.1 ± 2.0	17.8 ± 2.0	17.7 ± 2.0	17.4 ± 2.0	17.8 ± 2.0	18.7 ± 2.2	20.7 ± 2.2	18.9 ± 2.2	18.8 ± 2.2	20.1 ± 2.2
NFP-4	A = 17.7 + 0.5	17.4 ± 0.5	17.3 ± 0.5	17.0 ± 0.5	17.4 ± 0.5	18.3 ± 0.6	20.2 ± 0.6	18.5 ± 0.6	18.3 ± 0.6	19.6 ± 0.6
NFP-4	$B = 14.3 \pm 0.7$	14.2 ± 0.7	14.1 ± 0.7	13.9 ± 0.7	14.2 ± 0.7	15.0 ± 0.8	16.3 ± 0.8	15.1 ± 0.8	15.0 ± 0.8	16.0 ± 0.8
NFP-4	138 ± 0.7	137 ± 0.7	136 ± 0.7	134 ± 0.7	137 ± 0.7	144 + 0.8	15.7 ± 0.8	146 ± 0.8	145 ± 0.8	154 ± 0.8
NFP-4	19.5 ± 0.7	19.1 ± 1.0	19.0 ± 0.0	18.6 + 1.0	19.2 ± 1.0	20.1 + 1.1	22.3 + 1.1	20.3 + 1.1	20.1 + 1.1	21.6 + 1.1
		12.11 = 1.0	12.00 - 1.00				1.1			

NFP-5	16.2 ± 0.6	16.0 ± 0.6	15.9 ± 0.6	15.6 ± 0.6	16.0 ± 0.6	16.8 ± 0.7	18.5 ± 0.7	17.0 ± 0.7	16.9 ± 0.7	18.1 ± 0.7
Bald Mountain										
BMP-2	14.1 ± 0.4	13.1 ± 0.4	13.1 ± 0.4	12.7 ± 0.4	13.9 ± 0.4	13.8 ± 0.5	16.1 ± 0.5	14.0 ± 0.5	13.9 ± 0.5	15.7 ± 0.5
BMP-4	14.1 ± 0.3	13.1 ± 0.3	13.1 ± 0.3	12.7 ± 0.3	14.0 ± 0.3	13.8 ± 0.4	16.1 ± 0.4	14.0 ± 0.4	13.9 ± 0.4	15.7 ± 0.4
BMP-5	16.0 ± 3.0	14.9 ± 3.0	14.8 ± 3.0	14.5 ± 3.0	15.8 ± 3.0	15.6 ± 3.3	18.3 ± 3.3	15.8 ± 3.3	15.7 ± 3.3	17.8 ± 3.3
BMP-7	15.2 ± 0.6	14.1 ± 0.6	14.0 ± 0.6	13.7 ± 0.6	15.0 ± 0.6	14.8 ± 0.6	17.3 ± 0.6	15.0 ± 0.6	14.9 ± 0.6	16.8 ± 0.6

^a Be-10 depth profile consisting of multiple measurements; see source referece for details ^b Al-26 age

Scaling schemes: St - Lal (199)/Stone (2000); De - Desilets and others (2003, 2006); Du - Dunai (2001); Li - Lifton et al., (2005); St (mag) - Lal (1991)/ Stone (2000) time dependent; NE Li - uses the Northeast North America ¹⁰Be calibration of Balco et al., (2009) and scaling scheme of Lifton et al., (2005; Li), resulting in a North America ¹⁰Be production rate of 4.50 ± 0.22 atoms g⁻¹ yr⁻¹

Table DR3. Cosmogenic exposure ages and normalized distance calculations

Location and feature (#=number of ages)	Age (ka)	Uncertainty <u>(ka)</u>	distance from cirque headwall (km)	normalized distance
Pine Creek, CO (Briner, 2009; this study)			47.1	4.85
terminal moraine old mode (5)	22.4	1.4	17.1	1.00
terminal moraine young mode (/)	15.8	0.4	17.1	0.79
Section (2)	1.7.7	0.2	13.2	0.17
Clear Creek, CO (this study)				
terminal moraine (3)	19.3	0.2	26.7	1.00
bedrock (1)	14.1	0.3	17.4	0.65
Lake Creek, CO (Schilgden, 2000; this study)				
Terminal moraine (1)	19.7	0.5	31.2	1.00
bedrock (1)	14.7	0.4	20.7	0.66
bedrock (1)	13.9	0.4	66	0.48
(-)				
Animas River valley, CO (Guido et al., 2007; Ward et	al., 2009)	1.5	02.1	1.00
terminal outwash profile	19.4	1.5	82.1	1.00
bedrock (1)	14.6	0.5	51.6	0.63
bedrock (1)	15.3	0.4	40.3	0.49
bedrock (1)	15.6	0.4	2	0.02
bedrock (1)	14.3	0.4	21.8	0.27
bedrock (1)	12.0	0.4	2	0.02
Middle Boulder Creek, CO (Ward et al., 2009)				
terminarl moraine (4)	20.3	2.1	18.6	1.00
bedrock (1)	17.8	0.6	11.9	0.64
bedrock (1)	13.8	0.4	9.4	0.51
bedrock (1)	12.5	0.5	5.4	0.29
bedrock (1)	12.0	0.4	2.6	0.14
cirque bedrock (6)	13.5	0.4	1.8	0.10
Jenny Lake WY (Licciardi and Pierce 2008)				
outer terminal moraine (10)	14.6	0.7	14	1.00
inner end moraine (8)	13.5	1.1	13.8	0.99
bedrock (1)	14.8	0.3	11.1	0.79
bedrock (1)	13.8	0.3	3.1	0.22
inner sontude cirque np boulders (3)	12.8	0.0	1.8	0.15
NW Yellowstone, MT, WY (Licciardi and Pierce, 2008)*			
Eightmile terminal moraine (9) (be ages)	16.5	1.4	111.1	1.00
Chico end moraine (8)	16.1	1.7	103.9	0.94
Junction Butte moraine, young mode (6)	14.2	0.4	23.4	0.48
• •, ; ;g (-)				
Wallowa Mountains, OR (Licciardi et al., 2004)				4.00
TTO terminal moraine (6)	21.8	0.9	27.1	1.00
TTY end moraine voung mode (4)	16.9	0.8	26.1	0.96
WTO end moraine (5)	17.3	0.9	25.1	0.93
bedrock (1)	11.1	0.6	0.4	0.01
Glacier Lakes moraine (4)	11.2	1.3	0.3	0.01
Freemont/Titcomb. Wind River Range WY (Gosse et a	ul., 1995a hi			
terminal moraine #1, outermost (3)	23.9	1.1	38.7	1.00
all other terminal moraine #1 (15)	20.7	1.8	38.2	0.99
end moraine #2 (2)	18.1	0.1	37.6	0.97
end moraine #3 (2)	18.5	0.9	37.4	0.97
end moraine # $5(3)$	17.9	1.4	36.5	0.94
outboard titcomb lakes boulders (4)	14.0	1.2	5	0.13
titcomb lakes moraine (9)	12.7	0.5	4.6	0.12
Western Unita Mountains IIT (Defenden at al 2000.	Laabe et al	2000)**		
terminal moraine - North Fork Provo River (8)	15.8	2009)***		1
Bald Mtn bedrock (4)	14.3	0.5		0
	2000			
Eastern Cascades, WA (36Cl ages; Porter and Swanse Leovenworth L (17)	on, 2008)	2	10.5	1.00
Leavenworth II (11)	19.1	5 11	19.5	0.97
Rat Creek I (6)	13.3	0.8	7	0.36
Rat Creek II (9)	12.5	0.5	6.5	0.33
Sigra Nevada CA (36C) ages Dilling at al 1006	000			
Tioga 3 - Bishop (11)	17.7	0.7	23	1.00
Tioga 4 - all ages (24)	14.9	1.9	15.1	0.66
Recess Peak - Bishop (summary)	13.3	0.5	2	0.09

**Measuring absolute distances in the western Uinta Mountains are not appropriate because the ice divide and terminal moraine are in adjacent valleys.

Figure DR1. Representative samples used for ¹⁰Be dating in the upper Arkansas River valley.

Figure DR2. Aerial view to the northeast showing both the upper and lower flood terraces deposited at 19.2 ± 0.1 ka and 17.8 ± 0.6 ka. The valley wall in the top-left portion of the photo likely served as the source region for terrace flood boulders. Flow of the Arkansas River is from left to right in photo.

Figure DR3. Reconstructed Pinedale paleoglaciers for Lake Creek, Clear Creek, and Pine Creek valleys. Ice surface contour interval is 200-ft (~61-m).

Figure DR4. Hypsometry data for Lake Creek, Clear Creek, and Pine Creek paleoglaciers. Left graph shows elevation distribution by area percent; right graph by cumulative area. Data points represent 200 ft. (~61 m) bins. See supplemental text (above) for ELA reconstruction methods.