A ¹⁰Be production-rate calibration for the Arctic

NICOLÁS E. YOUNG,^{1,2}* JOERG M. SCHAEFER,^{1,3} JASON P. BRINER² and BRENT M. GOEHRING⁴ ¹Lamont-Doherty Earth Observatory, Columbia University, Palisades, NY, 10964, USA ²Department of Geology, University at Buffalo, Buffalo, NY, USA ³Department of Earth and Environmental Sciences, Columbia University, New York, NY, USA

⁴Department of Earth and Atmospheric Sciences, Purdue University, West Lafayette, IN, USA

Department of Latur and Autospheric Sciences, Fundue Oniversity, West Latayette, itv, 05/

Received 18 January 2013; Revised 16 April 2013; Accepted 18 April 2013

ABSTRACT: We present a Baffin Bay ¹⁰Be production-rate calibration derived from glacial deposits in western Greenland and Baffin Island, and test our results against published ¹⁰Be calibration datasets to develop an Arctic ¹⁰Be production rate. Our calibration comprises: (i) ¹⁰Be measurements from moraine boulders linked to a ¹⁴C-dated moraine at Jakobshavn Isfjord in western Greenland, (ii) an independent and previously published ¹⁰Be production rate at Jakobshavn Isfjord and (iii) re-measured ¹⁰Be concentrations from a Baffin Island calibration site that is included in the north-eastern North America dataset. Combined, we calculate a sea-level/high-latitude ¹⁰Be production rate for the Baffin Bay region of 3.96 ± 0.07 atoms g⁻¹ a⁻¹ (Lal/Stone scaling model). After testing the Baffin Bay rate against calibration sites in Norway and north-eastern North America, we calculate a more conservative Arctic production rate of 3.96 ± 0.15 atoms g⁻¹ a⁻¹. The Baffin Bay and Arctic ¹⁰Be production rates are indistinguishable from the north-eastern North America ¹⁰Be production rate (3.91 ± 0.19 atoms g⁻¹ a⁻¹) and yield overall uncertainties of <2-3.7% (1 σ). These production rates reduce systematic uncertainties in ¹⁰Be-based chronologies of ice-margin change and allow ¹⁰Be-based chronologies to be more confidently compared with high-resolution climate records, such as those from Greenland ice cores. Copyright © 2013 John Wiley & Sons, Ltd.

KEYWORDS: Arctic; Baffin Island; ¹⁰Be exposure dating; Greenland ice sheet; production rate.

Introduction

¹⁰Be exposure dating is an invaluable tool for dating icemargin fluctuations in mountain-glacier and ice-sheet landscapes where organic remains for radiocarbon dating are often sparse or non-existent (Balco, 2011). Accordingly, ¹⁰Be ages from glacial–geological features yield important insights into ocean–atmosphere–cryosphere teleconnections governing regional, hemispheric and global climate variability (e.g. Gosse *et al.*, 1995; Ivy-Ochs *et al.*, 1999; Stone *et al.*, 2003; Briner *et al.*, 2009; Schaefer *et al.*, 2009; Licciardi *et al.*, 2009; Young *et al.*, 2012; Laabs *et al.*, 2013). The accuracy and precision of these and future ¹⁰Be chronologies, however, is critically dependent on knowledge of the ¹⁰Be production rate.

The first ¹⁰Be production-rate calibration dataset was derived from glacially eroded bedrock surfaces in the Sierra Nevada (~2150-3560 m asl; Nishiizumi et al., 1989). Soon thereafter additional ¹⁰Be calibration datasets were generated from moraines in Wyoming's Wind River Range (~3200 m; Gosse et al., 1995), Lake Bonneville shorelines (~1500 m; Gosse and Klein, 1996), moraines deposited by the Laurentide Ice Sheet (~300-375 m; Larsen, 1996), an Austrian landslide (~1400–1700 m; Kubik et al., 1998; Kubik and Ivy-Ochs, 2004), glacial deposits in Scotland (~550 m; Stone et al., 1998), and experimental water-target measurements (~140 and 3250 m; Nishiizumi et al., 1996). These calibration datasets were combined to generate a 'global' ¹⁰Be production rate of ~4.6 atoms $g^{-1} a^{-1}$ [07KNSTD; Stone (St) scaling; 10–13% uncertainties; Gosse and Phillips, 2001]. The global ¹⁰Be production rate was updated by Balco *et al.* (2008), which added ¹⁰Be measurements from Peru (~4045 m; Farber et al., 2005), to yield a ¹⁰Be production rate of 4.47 ± 0.40 atoms g⁻¹ a⁻¹ (St).

Building upon these pioneering studies are recent ¹⁰Be calibration experiments from north-eastern North America

(NENA; Balco et al., 2009), New Zealand (Putnam et al., 2010a), Patagonia (Kaplan et al., 2011), Norway (Fenton et al., 2011; Goehring et al., 2012) and Greenland (Briner *et al.*, 2012). These second-generation ¹⁰Be production rates are distinct from the previously published canonical global ¹⁰Be production rate in two key aspects: (i) they are systematically ~7-14% lower, and (ii) they have lower uncertainties (<5 vs. ${\sim}10\%$). Thus, ^{10}Be ages calculated using the latest production rates are systematically older and more precise (assuming the same ¹⁰Be measurement precision) than ¹⁰Be ages calculated with the global production rate. In the Southern Hemisphere, for example, ¹⁰Be ages calculated with the New Zealand rate have resulted in robust submillennial-scale records of glacier change (e.g. Kaplan et al., 2011; Putnam et al., 2010b, 2012) that reinforce the demand for additional high-precision ¹⁰Be production-rate calibration experiments in other regions.

Rapid and ongoing changes within the Arctic cryosphere can be better understood through ¹⁰Be-based reconstructions of ice-sheet and glacier change that yield important insights into the sensitivity of ice masses to different forcing mechanisms. To maximize the potential of this approach, however, well-constrained ¹⁰Be production-rate calibrations must be developed in the Arctic to generate ice-margin reconstructions that can be easily compared with high-resolution climate archives. Moreover, suitable Arctic ¹⁰Be calibration sites can be used to calculate sea-level high-latitude (SLHL) production rates from SLHL locations. In contrast, ¹⁰Be calibration datasets located at high altitude and mid to low latitudes (see examples above) must be scaled to reflect ¹⁰Be production at SLHL, which may incorporate altitudinal and latitudinal scaling errors into the reference ¹⁰Be production rates calculated at these locations. Thus, developing reference ¹⁰Be production rates at Arctic locales can minimize any potential uncertainty in the production rate contributed by altitudinal and latitudinal scaling errors.

We present a new regional ¹⁰Be production-rate calibration dataset with <2% precision (1 σ) from low-altitude (\sim 65–350

^{*}Correspondence: N. E. Young, ¹Lamont-Doherty Earth Observatory, as above. E-mail: nicolasy@ldeo.columbia.edu

m asl) ¹⁴C-dated glacial features located on opposing sides of Baffin Bay in western Greenland and east-central Baffin Island (~69–70°N; Fig. 1). We test these data against existing ¹⁰Be production-rate calibration datasets in Norway and NENA to calculate an Arctic ¹⁰Be production rate.

Baffin Bay ¹⁰Be production-rate calibration sites

Jakobshavn Isfjord, western Greenland: the Marrait and Tasiussaq moraines

Extensive work in the Jakobshavn Isfjord region over several decades has produced a well-constrained history of the icesheet margin between ca. 10 and 7 ka (Weidick, 1968; Long *et al.*, 2006; Weidick and Bennike, 2007; Briner *et al.*, 2010; Corbett *et al.*, 2011; Young *et al.*, 2011a, b, 2013). Here we briefly highlight the Fjord Stade moraine system (Fig. 1), comprising the older Marrait and younger Tasiussaq moraines, and their ¹⁴C-based depositional ages that are later combined with ¹⁰Be measurements from Marrait and Tasiussaq moraine boulders to develop site-specific ¹⁰Be production-rate calibration datasets.

Following retreat of the Greenland Ice Sheet out of Disko Bugt ca. 10 ka, the Marrait moraine at Jakobshavn Isfjord was deposited 9175 \pm 45 cal a BP (Young *et al.*, 2011b). This age is derived from bracketing ¹⁴C ages on a minerogenic sediment unit deposited in Pluto Lake during emplacement of the Marrait moraine (Fig. 1). Pluto Lake is a threshold lake (e.g. Kaplan et al., 2002; Briner et al., 2010) currently dominated by organic-rich sedimentation; however, during emplacement of the Marrait moraine, Jakobshavn Isbræ spilt silt-laden meltwater into Pluto Lake leading to a thick minerogenic unit bounded by fossiliferous gyttja (Figs 1B and 2A; Young et al., 2011b). Thus, bracketing ¹⁴C ages from sharp organic-minerogenic contacts above and below the minerogenic unit constrain the timing of Marrait moraine formation (Fig. 2; Supporting Information Table S1). Two maximum-limiting ¹⁴C ages immediately below the minerogenic unit are 9190 ± 60 and 9110 ± 80 cal a BP (1 σ) and two minimum-limiting ¹⁴C ages directly above the minerogenic unit are 9210 ± 70 and 9190 ± 60 cal a BP. All maximum- and minimum-constraining ^{14}C ages overlap at 1σ and we calculate a mean age of 9175 ± 45 cal a BP for deposition of the sediment unit, and thus the Marrait moraine (Young et al., 2011b). In addition, of the three Baffin Bay calibration datasets presented here, only the Marrait moraine ¹⁴C chronology does not include ¹⁴C ages from marine fauna, which may be affected by uncertainties in the applied marine reservoir corrections.

The age of the Tasiussaq moraine is constrained by several maximum- and minimum-limiting ¹⁴C ages in the Jakobshavn Isfjord region (Long *et al.*, 2006; Weidick and Bennike, 2007). Maximum-constraining ¹⁴C ages of $8800 \pm$ 340, 8750 ± 220 , 8670 ± 260 and 8570 ± 400 cal a BP are from marine bivalves overlain by Tasiussaq outwash south of the Isfjord (see Weidick and Bennike, 2007; Briner *et al.*, 2012). All maximum-constraining ages use the standard

Figure 1. Locations of Jakobshavn Isfjord (JI) and Clyde Inlet (CI) in the Baffin Bay (BB) region. (A) Marrait and Tasiussaq moraines at Jakobshavn Isfjord, and the locations of Pluto Lake south of the Isfjord and the sampled boulders from the Marrait moraine north of the Isfjord. (B) The Marrait moraine (red dots) resting directly adjacent to Pluto Lake. Pluto Lake's long axis is ~500 m. (C) Boulder-rich segment of the Marrait moraine north of the Isfjord. This figure is available in colour online at wileyonlinelibrary.com.

Figure 2. (A) Sediment stratigraphy from Pluto Lake with ¹⁴C sample locations. The alternating units of organic- and minerogenic-rich sediments show sharp transitions. The thick minerogenic section was deposited during emplacement of the Marrait moraine 9175 ± 45 cal a BP or 9240 ± 45 a before cE2011. (B) Normal kernel density estimate of ¹⁰Be concentrations from boulders resting on the Marrait moraine. Inset is the ¹⁰Be reference production rate (atoms g⁻¹ a⁻¹) using only the Marrait moraine dataset.

marine reservoir correction (410 a; $\Delta R = 0$ a), which is the typical value used in western Greenland (e.g. Lloyd *et al.*, 2005; Weidick and Bennike, 2007). Minimum-constraining ¹⁴C ages of 7740 ± 80, 7660 ± 40, 7600 ± 80 and 7590 ± 80 cal a BP are from basal lake sediments located inboard of the Tasiussaq moraine (Long *et al.*, 2006). Combined, maximum- and minimum-constraining ¹⁴C ages indicate that the Tasiussaq moraine was deposited between 8700 ± 100 and 7650 ± 70 cal a BP (Briner *et al.*, 2012; Young *et al.*, 2013).

Clyde Inlet, Baffin Island

At the head of Clyde Inlet rests a prominent ice-contact glaciomarine delta whose depositional age is constrained by bracketing ¹⁴C ages (Briner et al., 2007). Resting on the delta surface are imbricated clast-supported boulders, and draped onto the foreslope of the delta are bivalve-rich marine muds. Because the delta must have been emplaced before the draped marine deposits, ¹⁴C ages from bivalves provide minimum age constrains for the delta. Three ¹⁴C ages from these deposits are $7950\pm45,\,7905\pm70$ and 7790 ± 55 cal a BP (recalibrated from Briner et al., 2007; locally calibrated $\Delta R = 130$ a). These ages are in stratigraphic order and therefore the lowermost (oldest) age is the closest constraining minimum age for the delta (7950 \pm 45 cal a BP). The maximum age of the delta is constrained by a $^{14}\mathrm{C}$ age of 8435 ± 50 cal a BP from an older, higher elevation icecontact delta located \sim 4 km down-fjord (Briner *et al.*, 2007). Thus, our target delta at the head of Clyde Inlet, including the boulders resting atop the delta, was deposited between 8435 \pm 50 and 7950 \pm 45 cal a BP.

Materials and methods

¹⁰Be sample collection

We sampled five boulders on the Marrait moraine at a location ~ 10 km north of Jakobshavn Isfjord (Figs 1 and 3) because there are no boulders suitable for 10 Be dating on

the segment of the Marrait moraine located directly adjacent to Pluto Lake (Fig. 1B). In fact, several field seasons in the Jakobshavn Isfjord region revealed that the sampled Marrait moraine segment at Jakobshavn Isfjord is the only section of this moraine with boulders suitable for ¹⁰Be dating. Boulders were sampled with a hammer and chisel, and we sampled flat surfaces avoiding boulder edges. Shielding by the surrounding topography was measured with a clinometer, and sample elevations were measured with a handheld GPS receiver with a vertical uncertainty of ~5 m. These sampling protocols were used for Tasiussaq moraine boulders (*n*=6), which were sampled in 2008–2009 (Young *et al.*, 2011b), and boulders resting atop the ice-contact delta at Clyde Inlet sampled in 2001–2003 (*n*=7; Briner *et al.*, 2007).

¹⁰Be sample preparation and ¹⁰Be data

Chemical processing for samples from the Marrait moraine took place at the University of Buffalo Cosmogenic Nuclide Laboratory following procedures modified from Kohl and Nishiizumi (1992) and the University of Vermont Cosmogenic Laboratory's beryllium extraction procedures (www.uvm.edu/cosmolab). Samples from Clyde Inlet were prepared at the Lamont-Doherty Earth Observatory Cosmogenic Nuclide Laboratory following standard Be extraction methods (www. Ideo.columbia.edu/tcn/). All ¹⁰Be/⁹Be ratios were measured at the Lawrence Livermore National Laboratory Center for Accelerator Mass Spectrometry relative to the 07KNSTD standard with a reported ratio of 2.85×10^{-12} (Nishiizumi *et al.*, 2007; Rood *et al.*, 2010) and corrected for background procedural blanks (Table 1).

All sample information and measured ¹⁰Be concentrations can be found in Table 1. ¹⁰Be concentrations from Marrait moraine boulders exhibit analytical errors ranging from 1.9 to 3.4% and all ¹⁰Be concentrations overlap at 1 σ (Fig. 2). Measured ¹⁰Be concentrations from Tasiussaq moraine boulders are reported in Young *et al.* (2011b, 2013), but are also included in Table 1 for reference. ¹⁰Be concentrations from

Figure 3. Examples of sampled boulders from the Marrait moraine north of Jakobshavn Isfjord. In each photo, the person is standing on top of the sampled boulder used in the production-rate calibration. This figure is available in colour online at wileyonlinelibrary.com.

Tasiussaq moraine boulders have analytical errors ranging between 1.7 and 2.5%.

¹⁰Be measurements from boulders resting atop the icecontact delta at Clyde Inlet were originally completed between 2001 and 2003 and included as part of the NENA ¹⁰Be production-rate calibration dataset (Briner *et al.*, 2007; Balco *et al.*, 2009; Table 1; Fig. 4). We re-measured these samples and obtained analytical uncertainties ranging between 2.0 and 2.7% with ¹⁰Be concentrations overlapping at 1 σ (Table 1). In addition, the re-measured ¹⁰Be concentrations overlap with measurements completed in 2001–2003 (Fig. 4). The ¹⁰Be production-rate calibration values for the Clyde Inlet dataset presented here are based exclusively on the 2012 re-measurements.

Production-rate calculations

To calculate site-specific production rates and their uncertainties for the Baffin Bay datasets, we use a χ^2 minimization by selecting the best-fitting ¹⁰Be production rate that minimizes the misfit between the calculated ¹⁰Be concentration and the measured ¹⁰Be concentration. At sites where the independent age control is limited by maximum- and minimum-limiting radiocarbon ages (Clyde River, Tasiussaq moraine), we calculate reference production rates at each end member and then take the midpoint of these values to estimate the reference production rate. Site-specific production rates are then used to calculate a Baffin Bay production rate using the error-weighted mean of these values (see discussion below). To develop a broader Arctic production rate, we use a χ^2 minimization by selecting the best-fitting ¹⁰Be production rate that minimizes the misfit between predicted ¹⁰Be ages

Copyright © 2013 John Wiley & Sons, Ltd.

and the true age of the geomorphic feature at the Baffin Bay calibration sites. This approach avoids the practice of estimating minimum and maximum bounding ages by a single probability distribution (Clyde River, Tasiussag moraine), and instead imposes a penalty to the fit only if the predicted ¹⁰Be ages lie outside of the bounding age constraints. The bestfitting Baffin Bay production rate with this method is used to calculate predicted ¹⁰Be ages at additional ¹⁰Be calibration sites (Norway, Connecticut River Valley), and the misfit between predicted and true ages at these calibration sites is used to estimate an Arctic production rate uncertainty. These calibration sites are included in our analysis because they rest at similar altitudes as the Baffin Bay sites (<400 m asl), and they are located at latitudes where the geomagnetic cutoff rigidities are similar to those for the Baffin Bay sites (\sim 5– < 2 GV; Lifton et al., 2008). We note that the two methods described here yield the same baseline production rate values; however, the production rate uncertainty differs between methods, which are discussed in detail below.

SLHL ¹⁰Be production rates were determined using the five common scaling schemes (Lal, 1991; Stone, 2000; Dunai, 2001; Lifton *et al.*, 2005; Desilets *et al.*, 2006). ¹⁰Be concentrations were calculated using Matlab code developed for the CRONUS-Earth web-based calculator, version 2.2 (Balco *et al.*, 2008). Air pressure changes with elevation are calculated following the standard atmosphere equation, with sea level air pressure and temperature derived from the NCAR/NCEP reanalysis data product (www.cdc.noaa.gov/ ncep_reanalysis/). Production of ¹⁰Be by muons is absolutely determined following Heisinger *et al.* (2002a, b); therefore production rates are reported for spallation only. In the text we present and discuss ¹⁰Be production rates using the

Sample	Latitude (DD)	Longitude (DD)	Elevation (m asl)	Boulder dimensions $(L \times W \times H)$ (m)	Thickness (cm)	Shielding correction	Quartz (g)	⁹ Be carrier (μg)	$^{10}\text{Be}/^9\text{Be ratio}\pm1\sigma$ $(10^{-13})^d$	${}^{10}\text{Be}\pm1\sigma \label{eq:10}$ (10 ⁴ atoms g^{-1})^e
Marrait Moraine, Jakobshavn Isbræ, w	estern Greenla	Ind ^a . (Independ	lent age: 924	5 ± 45 a before 2011) ^f	Li ,		01710	- 	COO 0 - 122 C	
11Q00-01 11Q00-02	69.2844 69.2844	-50.7569	350 350	2 × 1.2 × 1.2 1.25 × 1.25 × 1.5	0.1 1.5	0.995 ceee	50.0475	151	2.775 ± 0.053	5.58 ± 0.11
11Q00-03	69.2844	-50.7566	350	$2.5 \times 1.25 \times 1.5$	-	0.995	50.3801	152	2.831 ± 0.055	5.71 ± 0.11
11Q00-04	69.2844	-50.7562	350	$4 \times 1.5 \times 1.5$	1.25	0.995	50.1125	151	2.751 ± 0.062	5.54 ± 0.12
11000-05	69.2842	-50.7528	350	$4 \times 4 \times 1.75$	-	0.996	41.4587	151	2.316 ± 0.052	5.64 ± 0.13
Blank_2011October25 (Buffalo)								151	0.067 ± 0.032	
Tasiussaq Moraine, Jakobshavn Isbræ,	western Greel	nland ^a . (Indepe	ndent age: 8	240 ± 525 a before 2010)f					
FST08-01	69.2022	-51.0878	80	$3 \times 3 \times 2.5$	1.0	0.999	69.9275	122	3.340 ± 0.057	3.89 ± 0.07
FST08-02	69.2019	-51.0860	80	$4 \times 3.25 \times 2.5$	1.0	0.999	82.0407	122	3.711 ± 0.073	3.69 ± 0.07
09GRO-08	69.113 1	-51.0371	175	2.75 imes 2 imes 1.75	1.0	1.000	64.3940	104	3.880 ± 0.096	4.21 ± 0.10
09GRO-09	69.113 0	-51.0360	175	$2.25 \times 1.5 \times 1.25$	1.0	1.000	87.4825	105	5.283 ± 0.099	4.23 ± 0.08
09GRO-11	69.112 9	-51.0344	175	$1.5 \times 1.5 \times 1.75$	4.0	1.000	85.0450	105	4.924 ± 0.114	4.05 ± 0.09
09GRO-12	69.113 0	-51.0343	175	$2.25 \times 2 \times 1.75$	3.0	1.000	86.6038	104	5.175 ± 0.120	4.17 ± 0.10
Blank_2010November12 (Buffalo) Blank_2011January22 (Buffalo)								105 121	0.03 ± 0.014 0.013 ± 0.003	
Ire-contact delta. Clude Inlet: Baffin Is	d(0101) buels	(Independent a	ae. 8750 + 7	40 a hafora 2003) ^f						
CI2-CONTRACT ACTER, CIJAC INICI, DAINI I.	60 8353	-70 4970	6°, 0430 ± 4 65		05	1 000	30 1639	759	0.656 ± 0.017	3 77 + 0 09
CI2-01-2	69.8345	-70.4980	65	3×3×2	0.5 0.4	1.000	19.3660	208	0.521 ± 0.011	3.73 ± 0.08
CR-03-90	69.8302	-70.4962	22	$2 \times 2 \times 1.3$ $2 \times 2 \times 1.3$	2.0	1.000	20.0743	202	0.530 ± 0.011	3.65 ± 0.08
CR-03-91	69.8318	-70.4958	2.9	2.1 × 2.1 × 1.1	2.0	1.000	14.3790	259	0.304 ± 0.007	3.66 ± 0.08
CR-03-92	69.8318	-70.4958	67	$3.2 \times 3.2 \times 1.5$	2.0	1.000	29.8300	258	0.646 ± 0.014	3.72 ± 0.08
CR-03-93	69.8324	-70.4967	67	$2.2 \times 2.2 \times 1.6$	3.0	1.000	25.2160	207	0.667 ± 0.013	3.66 ± 0.07
CR-03-94	69.8328	-70.4975	65	$3 \times 3 \times 1.3$	2.0	1.000	18.6278	207	0.524 ± 0.012	3.90 ± 0.09
Blank 1 2012Mav07 (LDEO)								258	0.00403 ± 0.0014	
Blank_2_2012May07 (LDEO)								207	0.00144 ± 0.0007	
Ice-contact delta, Clyde Inlet, Baffin Is	sland (2001–20	03) ^c . (Indepen	dent age: 82.	50 ± 240 a before 2003) ^f						
Cl2-01-1	69.8353	-70.4970	65	$1.5 \times 1.5 \times 2$	5.0	1.000	61.45	570	0.561 ± 0.063	$3.59 \pm 0.39 \ (3.25 \pm 0.35)$
Cl2-01-2	69.8345	-70.4980	65	$3 \times 3 \times 2$	4.0	1.000	52.06	470	0.616 ± 0.063	$3.83 \pm 0.38 \ (3.46 \pm 0.34)$
CR03-90	69.8302	-70.4962	72	$2 \times 2 \times 1.3$	2.0	1.000	26.76	350	0.488 ± 0.036	$4.02 \pm 0.34 \ (3.63 \pm 0.30)$
CR03-91	69.8318	-70.4958	67	$2.1 \times 2.1 \times 1.1$	2.0	1.000	28.3041	343	0.464 ± 0.034	3.70 ± 0.30 (3.35 ± 0.27)
CR03-92	69.8318	-70.4958	67	$3.2 \times 3.2 \times 1.5$	2.0	1.000	52.9147	345	0.929 ± 0.054	$4.02 \pm 0.26 \ (3.63 \pm 0.24)$
CR03-93	69.8324	-70.4967	67	$2.2 \times 2.2 \times 1.6$	3.0	1.000	41.3262	347	0.739 ± 0.036	$4.11 \pm 0.23 \ (3.72 \pm 0.21)$
CR03-94	69.8328	-70.4975	65	$3 \times 3 \times 1.3$	2.0	1.000	40.2615	354	0.708 ± 0.046	$4.23 \pm 0.29 \ (3.82 \pm 0.26)$
^a Samples from western Greenland we	re prepared at	the University	at Buffalo us	ing a carrier with a ⁹ Be c	concentration o	of 405 p.p.m.;	previously re	ported in Youn	g <i>et al.</i> (2011b, 2013).	^b Samples from Baffin Island
(2012) were prepared at LDEO (Schae	fer <i>et al.</i> , 2009) using LDEO (Carrier 5.1 w	ith a ⁹ Be concentration o	f 1024 p.p.m.	^c Original Baffi	n Island samp	les (2001–2003) were prepared at the	University of Colorado with
SPEX-brand carrier with a "Be concen	tration of 1000) p.p.m. Sample trations listed i	es CI2-01-1, Brinor of 3	CI2-01-2, and CR03-90 v	vere prepared	using a 2-digit	balance. The dependent	reported conc	entrations are those rep	orted in Balco <i>et al.</i> (2009), com wortern Croonland and
Baffin Island (2012) are reported rela	tive to the 07	KNSTD standar	rd (2.85 \times 10	1 ⁻¹² ; Nishiizumi <i>et al.</i> , 2	2007). ^e Origina	al AMS analys	es for Baffin	Island samples	were standardized to	KNSTD3110 (3.15×10^{-12})
Nishiizumi, 2002). ¹⁰ Be concentration	s in parenthese	es have been st	andardized to	the 07KNSTD standard	by multiplying	each concent	ration by a co	inversion factor	of 0.9042 and are dired	ctly comparable to the 2012
concentrations. 'Only the Marrait more \int_{-3}^{-3}	aine has a 'dire	ect' age. The mi	idpoints of th	e maximum- and minimu	um-constrainin	g radiocarbon	ages are shov	vn here for the	remaining datasets (see	text for details). All samples
use a density value of 2.65 g cm ^{-3} .										

Copyright © 2013 John Wiley & Sons, Ltd.

common 'St' scaling scheme, but production rates based on alternative scaling schemes are provided in Tables 2 and 3.

¹⁰Be production occurs until the year of sample collection, whereas ¹⁴C ages are reported relative to the year 1950 AD. To synchronize the ¹⁰Be and ¹⁴C time scales, we added 61 years (CE2011) to the calibrated ¹⁴C age of the Marrait moraine, 60 years (CE2010) to the calibrated ¹⁴C ages that bracket deposition of the Tasiussaq moraine and 53 years (cc2001–2003) to the calibrated $^{14}\mathrm{C}$ ages that constrain deposition of the Clyde Inlet ice-contact delta; ages were then rounded to the nearest decade. Aligning the ${}^{\breve{1}0}\text{Be}$ and ¹⁴C time scales for the Tasiussaq moraine dataset results in a slightly lower production rate than the value reported in Briner et al. (2012). We assume zero erosion for all boulder surfaces because boulders displayed no discernible grain-tograin relief and striations were commonly observed on several boulders (Young et al., 2011a, b, 2013). In addition, we do not correct ¹⁰Be concentrations for snow cover. All boulder locations are from open, windswept locations, and at Clyde Inlet, snow-free boulders on the ice-contact delta were sampled in the spring – the season of maximum snow cover.

¹⁰Be production-rate calibrations

Baffin Bay

The local ^{10}Be production rates for the Marrait, Tasiussaq and Clyde Inlet datasets are 6.07 \pm 0.08, 5.08 \pm 0.32 and 4.52 \pm

0.13 atoms g^{-1} a^{-1} , respectively. To compare calibration experiments from different locations, however, local production rates must be referenced to SLHL; the reference ¹⁰Be production rates below are calculated using the misfit between calculated and measured ¹⁰Be concentrations (see above).

The reference ¹⁰Be production rate at Jakobshavn Isfjord based solely on the Marrait moraine ¹⁰Be and ¹⁴C dataset is 3.94 ± 0.08 atoms $g^{-1}~a^{-1}$ (St; Table 2). Supporting this ^{10}Be production rate are minimum and maximum allowable ¹⁰Be production rates from Jakobshavn Isfjord of 3.67 and 4.19 atoms $g^{-1} a^{-1}$ with a mid-point value of 3.93 ± 0.26 atoms $g^{-1} a^{-1}$ (Fig. 4; Briner *et al.*, 2012). These values utilize maximum- and minimum-constraining 14C ages on the Tasiussaq moraine and ¹⁰Be concentrations from Tasiussaq moraine boulders (Table 1; Young et al., 2011b; Briner et al., 2012). At Clyde Inlet, the minimum and maximum allowable reference ¹⁰Be production rates based on bracketing ^{14}C ages are 3.89 and 4.14 atoms $g^{-1}~a^{-1}$ with a midpoint value of 4.02 ± 0.13 atoms $g^{-1}~a^{-1}$ (Table 2; Fig. 4). In summary, the three independent reference ¹⁰Be production rate values from the Marrait, Tasiussag and Clyde Inlet datasets are 3.94 ± 0.08 , 3.93 ± 0.26 and 4.02 ± 0.13 atoms $g^{-1} a^{-1}$, respectively.

The ¹⁰Be production-rate calibration values from the Marrait, Tasiussaq and Clyde Inlet calibration datasets display high internal consistency as they are statistically identical values. The arithmetic mean and standard deviation of these

Copyright © 2013 John Wiley & Sons, Ltd.

Figure 4. (A) Normal kernel density estimate of ^{10}Be concentrations from boulders resting on the Tasiussaq moraine, and the maximum and minimum allowable reference ¹⁰Be production rates (atoms g^{-1} a^{-1}) based on the independent ¹⁴C control. ¹⁰Be concentrations have been scaled to reflect the 95-m altitude difference between boulder elevations on opposing sides of the Isfjord (Table 1). (B) Two generations of ¹⁰Be concentrations from boulders resting on the ice-contact delta at Clyde Inlet, Baffin Island. The summed probability of the original ¹⁰Be concentrations (2001-2003) are shown in gray; individual measurements (not shown) had 1σ analytical uncertainties ranging from 5.6 to 10.9% (Briner et al., 2007; Balco et al., 2009). New ¹⁰Be concentrations (remeasured 2012) with 1σ analytical uncertainties ranging from 2.0 to 2.7% are in black. The maximum and minimum allowable reference ¹⁰Be production rates based on the independent ¹⁴C control for the icecontact delta use these new measurements.

Table 2a. Baffin Bay ¹⁰Be production-rate calibration datasets.

Li

Lm

 4.38 ± 0.07 (1.6%)

 3.96 ± 0.07 (1.8%)

	, ,								
Scaling scheme I	Marrait Mor D (this stud	raine y)	Tasiu Mora	ssaq aine	Cl Ba	yde inlet, ffin Island	(m	Baffin Bay ean \pm 1 SD)	Baffin Bay (error-weighted mean)
St	3.94 ± 0.08 (2.0%)	3.93 ± 0.2	6 (6.6%)	4.02 =	= 0.13 (3.2%)	3.96	±0.05 (1.3%)	3.96±0.07 (1.8%)
De	4.14 ± 0.09 (2.2%)	4.06 ± 0.2	27 (6.7%)	4.11 =	0.13 (3.2%)	4.10	± 0.04 (1.0%)	$4.13 \pm 0.07 \; (1.7\%)$
Du	4.10 ± 0.09 (2.2%)	4.03 ± 0.2	27 (6.7%)	4.08 =	- 0.13 (3.2%)	4.07	± 0.04 (1.0%)	4.09 ± 0.07 (1.7%)
Li	4.39 ± 0.09 (2.1%)	4.32 ± 0.2	9 (6.9%)	4.37 =	- 0.14 (3.2%)	4.36	± 0.04 (1.0%)	$4.38 \pm 0.07 \; (1.6\%)$
Lm	3.94 ± 0.08 (2.0%)	3.93 ± 0.2	.6 (6.6%)	4.02 =	= 0.13 (3.2%)	3.96	± 0.05 (1.3%)	$3.96 \pm 0.07 \; (1.8\%)$
Table 2b	• Arctic ¹⁰ Be productio	on-rate cali	bration datas	sets.					
Scaling	Baffin Bay	Norway	Oldedalen	Norway-ł	Halsnøy	Norway-Grøt	landsura	Norway-Russenes	CT River Valley
St	3.96±0.07 (1.8%)	4.04 ± 0	.13 (3.2%)	4.19±0.1	1 (2.6%)	3.63 ± 0.15	(4.1%)	4.03 ± 0.21 (5.0%) $3.98 \pm 0.13 (3.3\%)$
De	4.13 ± 0.07 (1.7%)	4.17 ± 0	.13 (3.1%)	4.29 ± 0.1	1 (2.6%)	3.72 ± 0.15	(4.0%)	4.15 ± 0.21 (5.1%)) $4.21 \pm 0.14 (3.3\%)$
Du	$4.09 \pm 0.07 \; (1.7\%)$	4.16 ± 0	.13 (3.1%)	4.29 ± 0.1	1 (2.6%)	3.69 ± 0.15	(4.1%)	4.11 ± 0.21 (5.1%)) $4.24 \pm 0.14 (3.3\%)$

 $4.04 \pm 0.13 \; (3.2\%)$ $4.19\pm0.11~(2.6\%)$ $3.92\pm 0.13~(3.3\%)$ Values in parentheses are 1σ uncertainties. Oldedalen – production rate using only the ¹⁰Be dataset from Oldedalen (Goehring *et al.*, 2012). Halsnøy-production rate using only the ¹⁰Be dataset and no uplift correction from Halsnøy (Goehring et al., 2012). Norway-Grøtlandsuraproduction rate using only the ¹⁰Be dataset from Grøtlandsura (Fenton et al., 2011). Norway-Russenes-production rate using only the ¹⁰Be dataset from Russenes (Fenton et al., 2011). CT River Valley - production rate using only the ¹⁰Be dataset from the Connecticut River Valley (Balco et al., 2009).

 3.98 ± 0.16 (4.0%)

 3.63 ± 0.15 (4.1%)

 4.58 ± 0.12 (2.6%)

 ^{10}Be production rates is 3.96 ± 0.05 atoms $g^{-1}~a^{-1}~(1\sigma$ uncertainty of 1.3%), but we favour the error-weighted mean Baffin Bay reference ^{10}Be production rate of 3.96 ± 0.07 atoms g^{-1} a^{-1} (1 σ uncertainty of 1.8%; Table 2) because it gives highest weight to the Marrait moraine dataset, which has the most precise ¹⁴C control of the three calibration datasets, and its uncertainty is more conservative. We emphasize that site-specific and Baffin Bay production rate uncertainties reflect only (i) individual ¹⁰Be measurement uncertainties, (ii) the scatter of ¹⁰Be measurements at each site and (iii) the uncertainty in the independent radiocarbon control for each calibration dataset. However, we report these values because they are directly comparable to the reported production rates and their stated uncertainties at other ¹⁰Be calibration sites (Tables 2 and 3). Next, we briefly review additional Northern Hemisphere ¹⁰Be calibration sites and their reported production rates. These calibration sites

 4.44 ± 0.14 (3.2%)

are then used to assess the combined analytical and scaling uncertainty in an Arctic production rate.

 4.43 ± 0.22 (5.0%)

 4.04 ± 0.20 (5.0%)

Oledalen and Halsnøy calibration sites, Norway

The production rate from the Oldedalen rock avalanche site is 4.04 ± 0.13 atoms g⁻¹ a⁻¹ (n = 7 ¹⁰Be measurements; 3.2% uncertainty). The independent age control is a single ^{14}C age of 6010 \pm 110 cal a BP from wood entrained in the avalanche deposit (Nesje, 2002; Goehring et al., 2012).

At Halsnøy, the production rate is 4.19 ± 0.11 atoms g⁻¹ a^{-1} ($n = 8^{10}$ Be measurements; 2.6% uncertainty). This value is slightly lower than the value reported in Goehring et al. (2012) because we have removed the uplift component to make this production rate directly comparable with the Baffin Bay datasets (see discussion below). The Halsnøy site

Table 3a. Arctic ¹⁰Be production-rate calibration datasets, including an altitude uplift correction.

Scaling scheme ID	Baffin Bay	Norway-Oldedalen	Norway-Halsnøy	Norway-Grøtlandsura	Norway-Russenes	Arctic
St	$4.16 \pm 0.07 \ (1.8\%)$	4.04 ± 0.13 (3.2%)	4.25 ± 0.11 (2.6%)	3.73 ± 0.15 (4.0%)	4.14±0.21 (5.1%)	4.16 ± 0.19 (4.5%)
De	$4.31 \pm 0.07 \ (1.7\%)$	4.17 ± 0.13 (3.1%)	4.35 ± 0.11 (2.5%)	3.81 ± 0.15 (3.9%)	4.25 ± 0.21 (4.9%)	4.31 ± 0.20 (4.6%)
Du	4.27 ± 0.07 (1.7%)	4.16 ± 0.13 (3.1%)	4.35 ± 0.11 (2.5%)	3.78 ± 0.15 (4.0%)	4.22 ± 0.21 (5.0%)	4.27 ± 0.21 (4.9%)
Li	4.58 ± 0.08 (1.8%)	4.44 ± 0.14 (3.2%)	4.65 ± 0.12 (2.6%)	4.08 ± 0.16 (3.9%)	4.54 ± 0.23 (5.1%)	4.58 ± 0.23 (5.0%)
Lm	$4.16 \pm 0.07 \; (1.8\%)$	4.04 ± 0.13 (3.2%)	$4.25\pm 0.11~(2.6\%)$	3.73 ± 0.15 (4.0%)	$4.14 \pm 0.21 \; (5.1\%)$	4.16 ± 0.19 (4.5%)

Table 3b. Comparison of ¹⁰Be production-rate calibration datasets.

Scaling	Arctic	NENA	New Zealand	Patagonia	Global (pre-2008)
St	3.96 ± 0.15 (3.7%)	3.91 ± 0.19 (4.9%)	3.88±0.10 (2.5%)	n/a	4.47 ± 0.40 (8.9%)
De	4.13 ± 0.17 (4.0%)	4.10 ± 0.20 (4.9%)	3.91 ± 0.10 (2.5%)	3.91 ± 0.12 (3.1%)	4.40 ± 0.53 (12.0%)
Du	4.09 ± 0.18 (4.3%)	4.13 ± 0.20 (4.8%)	3.91 ± 0.10 (2.5%)	3.95 ± 0.12 (3.0%)	4.42 ± 0.53 (12.0%)
Li	4.38 ± 0.19 (4.3%)	4.47 ± 0.22 (4.9%)	4.22 ± 0.11 (2.6%)	4.21 ± 0.13 (3.1%)	4.85 ± 0.49 (10.1%)
Lm	$3.96 \pm 0.15 \; (3.7\%)$	3.85 ± 0.19 (4.9%)	3.79 ± 0.10 (2.6%)	3.70 ± 0.11 (3.0%)	$4.37 \pm 0.39 \; (8.9\%)$

Values in parentheses are 1 or uncertainties. The Oldedalen values require no correction. NENA-north-eastern North America production rate; Balco et al. (2009). New Zealand - Putnam et al. (2010a). Patagonia - Kaplan et al. (2011). Global - Balco et al. (2008). For the New Zealand dataset we report the PNZ1 values, which were calculated with the same geomagnetic framework as the arctic values.

 4.60 ± 0.15 (3.3%)

comprises ¹⁰Be measurements from moraine boulders and ¹⁴C-dated sediments deposited in a paleolake basin that rested below the local marine limit; these lake sediments are linked to the moraine (Goehring et al., 2012; Lohne et al., 2012). The independent ¹⁴C control from the lake basin probably reflects the timing of moraine abandonment; however, the possibility that these sediments and related ¹⁴C control date the metamorphosis from a marine to freshwater environment cannot be ruled out entirely (Lohne et al., 2012). In the former scenario, the numerous ^{14}C ages and high-precision ¹⁰Be measurements from the Halsnøy site would yield an exceptionally well-constrained production rate of 4.19 ± 0.11 atoms g⁻¹ a⁻¹. In their original publication, the reference ¹⁰Be production rates from Oldedalen and Halsnøy were averaged to generate one reference ¹⁰Be production rate (Goehring et al., 2012); re-calculated with our methods, that value is 4.12 ± 0.11 atoms g⁻¹ a⁻¹.

Grøtlandsura and Russenes calibration sites, Norway

The production rates at the Grøtlandsura and Russenes avalanche sites are 3.63 ± 0.15 (n = 3¹⁰Be measurements; 4.1% uncertainty) and 4.03 ± 0.21 atoms g⁻¹ a⁻¹ (n = 3¹⁰Be measurements; 5.0% uncertainty), respectively. Again, these values are slightly different from those in the original publication because we have recast the production rates using the same scaling and air pressure implementations that were used for the Baffin Bay, Halsnøy and Oledalen datasets. For the Grøtlandsura and Russenes calibration sites, the original authors presented an error-weighted production rate of 3.96 ± 0.16 atoms g⁻¹ a⁻¹ (Fenton *et al.*, 2011); here, the re-calculated value is 3.89 ± 0.16 atoms g⁻¹ a⁻¹, which incorporates shielding uncertainties of ~12–22% due to snow and moss cover on sampled boulders.

The Grøtlandsura avalanche is constrained by two minimum-limiting ¹⁴C ages from marine mollusks collected from interstitial cavities at the base of the avalanche deposit. The calibrated ¹⁴C ages range from 11 000 to 11 500 cal a BP and yield a weighted mean of 11 424 \pm 108 cal a BP (Fenton *et al.*, 2011). The age of the Russenes avalanche is constrained by three ¹⁴C ages from marine mollusks that yield a weighted mean of 10 942 \pm 77 cal a BP. The maximum age of both avalanches is constrained by stratigraphically older moraines that are assigned ages of ~11 530 a BP (Fenton *et al.*, 2011)

Connecticut River Valley, New England, USA

The Connecticut River Valley calibration site comprises four independent locations that were originally included in the broader NENA production-rate dataset (Balco *et al.*, 2009). We include these sites in our analysis because the geomagnetic cutoff rigidity and sample elevations at these locations are similar to those of the Baffin Bay and Norwegian calibration sites. The production rate for the entire dataset is 3.98 ± 0.13 atoms g⁻¹ a⁻¹ (n = 8 ¹⁰Be measurements; 3.2% uncertainty), and at each of the calibration sites, the independent age of the geomorphic feature is linked directly to the well-constrained New England varve chronology (see Balco *et al.*, 2009; Ridge *et al.*, 2012).

A ¹⁰Be production-rate calibration for the Arctic

The Baffin Bay ^{10}Be production rate presented above overlaps with all individual ^{10}Be production rates from Norway at 2σ (Table 2), and overlaps the Oldedalen, Russenes and Con-

Copyright © 2013 John Wiley & Sons, Ltd.

necticut River Valley values at 1σ uncertainty. To calculate an Arctic production rate with an uncertainty that incorporates potential scaling errors, we use the reference Baffin Bay production rate as determined by the misfit between predicted ¹⁰Be ages and true ages to calculate ¹⁰Be ages at the aforementioned calibration sites. Again, the baseline production rate determined using this method (3.96 atoms g⁻¹ a⁻¹; St) matches the error-weighted mean of the Baffin Bay sitespecific production rates described above.

The relative scatter of predicted ages compared with the true age for the entire dataset yields a standard deviation of 5.2% (Table S2; Fig. 5). The standard deviation of the sitespecific averages is 4.3% and the mean of these intrasite deviations is 3.7%; this value is an estimate of the scatter at a particular site attributed to measurement and geologic uncertainties. The amount by which the standard deviation of the entire dataset (5.2%) exceeds the mean of the intrasite distributions (3.7%) is an estimate of the intersite scatter attributed to scaling uncertainties. The production rate uncertainty can be estimated by solving the standard error propagation equation, resulting in a total uncertainty of 3.7%, and thus we calculate an Arctic reference production rate of 3.96 ± 0.15 atoms g⁻¹ a⁻¹ (St). In comparison, this same methodology results in a slightly higher uncertainty of 4.3% for the Li scaling scheme (Table S2; Fig. 5).

Glacioisostatic uplift and air-pressure distribution

All the discussed calibration sites rest near current or paleo ice sheets and are affected by fluctuating air-pressure distributions, which can affect the production of ¹⁰Be. Specifically, air pressure at these calibration sites is governed by (i) changing sample altitude driven by glacioisostatic uplift, (ii) ice-sheet-related pressure anomalies and (iii) eustatic sea level. Of these three factors controlling air pressure and thus the production of ¹⁰Be, the effect of glacioisostatic uplift on ¹⁰Be production can be most readily quantified using the standard altitude–pressure relationship. Our calibration sites initially rested at lower altitudes and because the timeintegrated altitude of each of our calibration sites rested deeper in the atmosphere, they experienced lower production rates, which might cause us to underestimate production rates.

To quantify the effect of increasing altitude during sample exposure on our production rates, we utilized well-constrained regional emergence curves from western Greenland and Clyde Inlet (Fig. S1; Long *et al.*, 2006; Briner *et al.*, 2007) and allowed ¹⁰Be production to vary due to temporally changing altitude. By applying this uplift correction to our Baffin Bay calibration sites, which experienced between ~45 and 60 m of uplift, the production rate increases by 4.8% (Fig. S1; Table 3). By comparison, at the Halsnøy site in southern Norway where samples experienced ~70 m of uplift, the production rate increases by 1.4% (Goehring *et al.*, 2012). Although these two sites experienced comparable amounts of total uplift, the corrections for the Baffin Bay sites are greater because their rate of uplift occurred more slowly.

Correcting production rates solely for the uplift-driven altitude effect would result in a maximum production rate because the altitude effect is counteracted to an unknown degree by (i) ice-sheet-driven changes to air pressure (Stone, 2000; Staiger *et al.*, 2007) and (ii) eustatic sea-level changes. (i) Katabatic wind effects at ice-sheet margins would result in lower atmospheric pressure at sample sites leading to higher production rates. For sites near ice sheets exposed since the Last Glacial Maximum, this effect could have been

Figure 5. Fit of the St and Li scaling schemes to the Arctic calibration dataset. A value of 1 represents a perfect fit between predicted ¹⁰Be ages and the true age at each site. Values >1 indicate that a lower production is needed to achieve a perfect fit between predicted and true ages; values <1 require a higher production rate. Only the misfit plots using the base (no-uplift) production rates are shown; however, we show the uplift-corrected production rates that are calculated using this same method. The misfits between the predicted and true ages at each site are similar regardless of which production rate is used (base vs. uplift-corrected), and therefore the misfit plots using the uplift-corrected production rate look nearly identical to those shown here. See Table S2 for details.

~10%, although the effect is short-lived (Staiger *et al.*, 2007) and should also be considered a maximum correction as our discussed calibration sites are Holocene in age. (ii) Eustatic sea level during emplacement of the Baffin Bay ¹⁰Be calibration features (~9200–8000 a) was ~25–10 m below present (i.e. Bard *et al.*, 1996), which would also counteract the uplift-based altitude effect – lower eustatic sea level would result in lower site-specific atmospheric pressure (i.e. higher ¹⁰Be production).

Nonetheless, we tested the uplift-corrected Baffin Bay production rate (Tables 3 and S2) by calculating predicted ¹⁰Be ages at all the Baffin Bay, Norwegian and Connecticut River Valley calibration sites and comparing these predicted ages with the true age of each site's geomorphic feature (Table S2). Critical to this approach, however, is that predicted ¹⁰Be ages at each site must be calculated in the same manner as the uplifted-corrected production rates using locally calibrated uplift curves and an altitude that varies temporally. We relied on locally calibrated uplift curves at each of the calibration sites to calculate predicted ¹⁰Be ages with the exception of the Oledalen and Connecticut River Valley sites. The Oledalen site is too young (~6100 a BP) to have undergone any significant amount of post-glacial uplift, and for the Connecticut River Valley calibration site, we

c curve (Peltier, 2004; Balco *et al.*, 2009). Using the uplift-corrected production rate, the relative scatter of predicted ages compared with the true age for the option dataset vialed a standard dual time of 6.2000 (C).

entire dataset yields a standard deviation of 6.2% (St; Table S2; Fig. 5), which is similar to but slightly higher than the relative scatter of true age/predicted age ratios using the base (no-uplift) production rate (5.2%; Table S2). The total inter-site scatter due to potential scaling uncertainties, which is an estimate of the total production-rate uncertainty, is 4.5%, which again is slightly higher than that for the no-uplift production rate (3.7%; Fig. 5). For the Li scaling scheme, the uplift-corrected production rate's total estimated uncertainty is 5.0% (Table S2; Fig. 5).

extracted paleoelevation histories from the ICE-5G glacioiso-

static rebound model in lieu of a locally calibrated uplift

For the Arctic calibration dataset, ¹⁰Be ages at each site calculated using the base and uplift-corrected production rates are almost identical despite the fact that the uplift-corrected production rates are \sim 4.0–4.5% higher. This similarity arises from all the calibration sites having relatively comparable uplift histories, and the process of calculating uplift-corrected ¹⁰Be ages in the exact same manner as calculating the uplift-corrected production rate; sample altitude and thus ¹⁰Be production must be allowed to vary

Table 4. Ratios of ¹⁰Be production rates compared with each other based on the St and Li scaling schemes.

	Arctic	NENA	New Zealand	Global
St (Lal/Stone)				
Arctic	_	0.99 ± 0.05	0.98 ± 0.03	1.13 ± 0.10
NENA	1.01 ± 0.04	_	0.99 ± 0.03	1.14 ± 0.11
New Zealand	1.02 ± 0.04	1.01 ± 0.05	_	1.15 ± 0.11
Global	0.89 ± 0.04	0.87 ± 0.05	0.87 ± 0.02	_
Li (Lifton)				
Arctic	_	1.02 ± 0.05	0.96 ± 0.03	1.11 ± 0.11
NENA	0.98 ± 0.04	_	0.94 ± 0.03	1.09 ± 0.11
New Zealand	1.04 ± 0.05	1.06 ± 0.05	_	1.15 ± 0.12
Global	0.90 ± 0.04	0.92 ± 0.05	0.87 ± 0.02	_

For simplicity we only report ratios using the Li scaling scheme, which is representative of other scaling schemes that include variations in the magnetic field.

temporally. Using either the base or the uplift-corrected production rate results in almost identical ages at the Arctic calibration sites that have undergone uplift, but this will not be true at locations where the sample elevation has remained constant through its exposure history. In this case, using a production rate that is 4.0-4.5% higher will result in ¹⁰Be ages that are 4.0-4.5% younger.

So, should the base or uplift-corrected production rate be used? We recommend using the Arctic production rate that does not include an uplift component because (i) this production rate results in a slightly better fit between predicted and true ages for the calibration dataset (Fig. 5; Table S2), and (ii) the Oledalen site, the only calibration site not to have experienced significant uplift, has a site-specific production rate of 4.04 ± 0.13 atoms g⁻¹ a⁻¹, consistent with the base Arctic production rate of 3.96 ± 0.15 atoms g⁻¹ a⁻¹ presented here. However, if the uplift-corrected production rate is chosen to calculate ¹⁰Be ages, sample altitude and ¹⁰Be production must be allowed to vary temporally; failing to implement this approach will result in ¹⁰Be ages that are systematically too young. To fully test base vs. uplift-corrected productions are needed from altitude-stable locations.

Where to use the Arctic production rate

The calibration sites occupy a relatively narrow range of altitudes and geomagnetic cutoff rigidities, and therefore the accuracy of exposure ages calculated at similar locations is minimally influenced by differences in scaling assumptions between scaling schemes (Balco et al., 2009). Thus, because the effects of the magnetic field are small at relatively high latitudes where the calibration sites are located, the Arctic reference production rate should result in accurate exposure ages at other high-latitude (>40°N), low-elevation (<1000 m asl) sites. In addition, although the Baffin Bay and Norwegian calibration sites are Holocene in age, the Connecticut River Valley calibration sites are up to ~ 16 ka in age; the agreement between predicted and true ages at the Connecticut River Valley sites (Fig. 5) indicates that the Arctic production rate is applicable through at least the Lateglacial period.

We also note that when considered independently, the Baffin Bay calibration sites all have statistically identical production rates (Table 2). Even when these production rates are corrected for the effects of glacioisostatic uplift using local uplift records, the production rates remain statistically indistinguishable, suggesting that throughout their exposure histories the Baffin Bay calibration sites experienced similar airpressure distributions. Accordingly, we recommend that the Baffin Bay production rate of 3.96 ± 0.07 atoms g⁻¹ a⁻¹ (St; 1.8% uncertainty) be used for calculating exposure ages from low-elevation sites spanning the Holocene in the Baffin Bay region. Beyond the Baffin Bay region, we recommend using the Arctic production rate (3.96 ± 0.15 atoms g⁻¹ a⁻¹; St) to calculate exposure ages, which propagates an uncertainty of 3.7% to account for SLHL scaling uncertainties.

We urge caution in using the Baffin Bay and Arctic production rates at lower latitudes and higher elevations; however, these production rates are, within errors, identical to the NENA ^{10}Be production rate of 3.91 ± 0.19 atoms $g^{-1} a^{-1}$ (Table 3; St; Balco *et al.*, 2008). In addition, the Baffin Bay and Arctic ¹⁰Be production rates are consistent with recent regional ¹⁰Be production-rate calibration datasets from New Zealand $(3.88 \pm 0.10 \text{ atoms g}^{-1} \text{ a}^{-1}, \sim 1030 \text{ m};$ Putnam et al., 2010a) that was subsequently confirmed in Patagonia (Kaplan et al., 2011; Tables 3 and 4). With St scaling, the Baffin Bay and Arctic production rates overlap with the New Zealand value at 1σ ; however, the production rates diverge when using the remaining scaling schemes that account for fluctuations in the paleomagnetic field (Table 4). These differences may relate to uncertainties in correcting for paleomagnetic field variations or to the scaling of ¹⁰Be production with elevation, or perhaps reflect real differences in the ¹⁰Be production rate between hemispheres.

Conclusions

¹⁰Be measurements from well-dated glacial deposits on opposing sides of Baffin Bay at low elevations afford a Baffin Bay SLHL reference 10 Be production rate of 3.96 ± 0.07 atoms g^{-1} a^{-1} . Combined with ¹⁰Be calibration sites from elsewhere in the Arctic, we suggest an Arctic-wide SLHL ¹⁰Be production rate value of 3.96 ± 0.15 atoms g⁻¹ a⁻¹. The Baffin Bay and Arctic-wide ¹⁰Be production rates have 1σ errors of <2 and 3.7%, respectively, and in turn considerably reduce the systematic error contributed by production rate uncertainties to ¹⁰Be exposure dating in this region. Furthermore, these calibration sites require minimal scaling to SLHL, reducing uncertainties in scaling model effects on production rate calculations. This progress is particularly important when comparing ¹⁰Be-based records of ice-margin change to welldated, high-resolution climate records. Even if minor uncertainties in ¹⁰Be dating remain related to the influence of altitude, sea level and pressure-field reorganization as triggered by isostatic uplift and ice-sheet configuration, a robust ¹⁰Be production rate for the Arctic is now in place. Future inter-comparisons between ¹⁰Be-based datasets

(e.g. interhemispheric), and between ¹⁰Be records and highresolution climate records, will be further improved by additional high-precision ¹⁰Be production-rate calibration experiments.

Supporting information

Additional supporting information can be found in the online version of this article at the publisher's web-site.

Table S1. Pluto Lake ¹⁴C sample information.

Table S2. Site-specific true age/predicted age misfit statistics.

Fig. S1. Emergence curves for the Marrait, Tasiussaq and Clyde River datasets used to calculate uplift-corrected production rates.

Please note: This supporting information is supplied by the authors, and may be re-organized for online delivery, but is not copy-edited or typeset by Wiley-Blackwell. Technical support issues arising from supporting information (other than missing files) should be addressed to the authors.

Acknowledgements. We thank Susan Zimmerman, Dylan Rood and Bob Finkel for careful ¹⁰Be measurements at Lawrence Livermore National Laboratory, and Sam Kelley for assistance in the field. We thank Greg Balco and an anonymous reviewer for their constructive reviews that greatly improved this manuscript. Greg Balco deserves an additional mention for his insightful comments and suggestions during this manuscript's revision phase. This work was partially supported by the US National Science Foundation (NSF-BCS 0752848 and NSF-BCS 1002597). J. M. S. acknowledges the Comer Science and Educational Foundation, the Lamont Climate Center and NSF-EAR (03-45865). N. E. Y. acknowledges partial support from an LDEO post-doctoral fellowship. This is LDEO contribution 7684.

Abbreviations. NENA, north-eastern North America; SLHL, sea-level high-latitude.

References

- Balco G. 2011. Contributions and unrealized potential contributions of cosmogenic-nuclide exposure dating to glacier chronology, 1990–2010. *Quaternary Science Reviews* **30**: 3–27.
- Balco G, Briner J, Finkel RC, *et al.* 2009. Regional beryllium-10 production rate calibration for late-glacial northeastern North America. *Quaternary Geochronology* **4**: 93–107.
- Balco G, Stone J, Lifton N, *et al.* 2008. A simple, internally consistent, and easily accessible means of calculating surface exposure ages and erosion rates from Be-10 and Al-26 measurements. *Quaternary Geochronology* **3**: 174–195.
- Bard E, Hamelin B, Arnold M, *et al.* 1996. Deglacial sea-level record from Tahiti corals and the timing of global meltwater discharge. *Nature* **382**: 241–244.
- Briner JP, Bini AC, Anderson RS. 2009. Rapid early Holocene retreat of a Laurentide outlet glacier through an Arctic fjord. *Nature Geoscience* **2**: 496–499.
- Briner JP, Overeem I, Miller GH, et al. 2007. The deglaciation of Clyde Inlet, northeastern Baffin Island, Arctic Canada. *Journal of Quaternary Science* **22**: 223–232.
- Briner JP, Stewart HAM, Young NE, et al. 2010. Using proglacialthreshold lakes to constrain fluctuations of the Jakobshavn Isbrae ice margin, western Greenland, during the Holocene. *Quaternary Science Reviews* **29**: 3861–3874.
- Briner JP, Young NE, Goehring BM, et al. 2012. Constraining Holocene 10Be production rates in Greenland. *Journal of Quaternary Science* **27**: 2–6.
- Corbett LB, Young NE, Bierman PR, et al. 2011. Paired bedrock and boulder 10Be concentrations resulting from early Holocene ice

retreat near Jakobshavn Isfjord. *Quaternary Science Reviews* **30**: 1739–1749.

- Desilets D, Zreda M, Prabu T. 2006. Extended scaling factors for in situ cosmogenic nuclides: new measurements at low latitude. *Earth and Planetary Sciences Letters* **246**: 265–276.
- Dunai TJ. 2001. Influence of secular variation of the magnetic field on production rates of in situ produced cosmogenic nuclides. *Earth and Planetary Sciences Letters* **193**: 197–212.
- Farber D, Hancock G, Finkel R, *et al.* 2005. The age and extent of tropical alpine glaciation in the Cordillera Blanca, Peru. *Journal of Quaternary Science* **20**: 759–776.
- Fenton CR, Hermanns R, Blikra L, *et al.* 2011. Regional 10Be production rate calibration for the past 12 ka deduced from the radiocarbon-dated Grøtlandsura and Russenes rock avalanches at 69°N, Norway. *Quaternary Geochronology* **6**: 437–452.
- Goehring BM, Lohne ØS, Mangerud J, et al. 2012. Late Glacial and Holocene beryllium-10 production rates for western Norway. *Journal of Quaternary Science* 27: 89–96.
- Gosse J, Evenson EB, Klein J, *et al.* 1995. Precise cosmogenic 10Be measurements in western North America: support for a global Younger Dryas cooling event. *Geology* **23**: 877–880.
- Gosse J, Klein J. 1996. Production rate of in-situ cosmogenic 10Be in quartz at high altitude and mid latitude. *Radiocarbon* **38**: 154–155.
- Gosse JC, Phillips FM. 2001. Terrestrial in situ cosmogenic nuclides: theory and application. *Quaternary Science Reviews* **20**: 1475–1560.
- Heisinger B, Lal D, Jull AJT, *et al.* 2002a. Production of selected cosmogenic radionuclides by muons: 2. Capture of negative muons. *Earth and Planetary Sciences Letters* **200**: 357–369.
- Heisinger B, Lal D, Jull AJT, et al. 2002b. Production of selected cosmogenic radionuclides by muons: 1. Fast muons. Earth and Planetary Sciences Letters 200: 345–355.
- Ivy-Ochs S, Schlüchter C, Kubik PW, et al. 1999. Moraine exposure dates imply synchronous Younger Dryas glacier advances in the European Alps and in the southern Alps of New Zealand. Geografiska Annaler 81A: 313–323.
- Kaplan MR, Strelin JA, Schaefer JM, et al. 2011. In-situ cosmogenic 10Be production rate at Lago Argentino, Patagonia: implications for late-glacial climate chronology. *Earth and Planetary Sciences Letters* **309**: 21–32.
- Kaplan MR, Wolfe AP, Miller GH. 2002. Holocene environmental variability in southern Greenland inferred from lake sediments. *Quaternary Research* **58**: 149–159.
- Kohl C, Nishiizumi K. 1992. Chemical isolation of quartz for measurement of in-situ-produced cosmogenic nuclides. *Geochimica et Cosmochimica Acta* **56**: 3583–3587.
- Kubik P, Ivy-Ochs S. 2004. A re-evaluation of the 0-10ka 10Be production rate for exposure dating obtained from the Köfels (Austria) landslide. *Nuclear Instruments and Methods in Physics Research B* **223-224**: 618–622.
- Kubik P, Ivy-Ochs S, Masarik J, *et al.* 1998. Be and Al production rates deduced from an instantaneous event within the dendrocalibration curve, the landslide of Köfels, Ötz Valley, Austria. *Earth and Planetary Sciences Letters* **161**: 231–241.
- Laabs BJC, Munroe JS, Best LC, et al. 2013. Timing of the last glaciation and subsequent deglaciation in the Ruby Mountains, Great Basin, USA. Earth and Planetary Sciences Letters 361: 16–25.
- Lal D. 1991. Cosmic ray labeling of erosion surfaces: *in situ* nuclide production rates and erosion models. *Earth and Planetary Sciences Letters* **104**: 424–439.
- Larsen P. 1996. In-situ production rates of cosmogenic 10Be and 26Al over the past 21,500 years determined from the terminal moraine of the Laurentide Ice Sheet, north-central New Jersey. MS thesis, University of Vermont.
- Licciardi JM, Schaefer JM, Taggart JR, *et al.* 2009. Holocene glacier fluctuations in the Peruvian Andes indicate northern climate linkages. *Science* **325**: 1677–1679.
- Lifton N, Smart DF, Shea MA. 2008. Scaling time-integrated in situ cosmogenic nuclide production rates using a continuous geomagnetic model. *Earth and Planetary Sciences Letters* **268**: 190–201.
- Lifton NA, Bieber JW, Clem JM, et al. 2005. Addressing solar modulation and long-term uncertainties in scaling secondary

cosmic rays for in situ cosmogenic nuclide applications. *Earth and Planetary Sciences Letters* **239**: 140–161.

- Lloyd JM, Park L, Kuijpers A, et al. 2005. Early Holocene palaeoceanography and deglacial chronology of Disko Bugt, West Greenland. Quaternary Science Reviews 24: 1741–1755.
- Lohne O, Mangerud J, Svendsen JI. 2012. Timing of the Younger Dryas glacial maximum in western Norway. *Journal of Quaternary Science* 27: 81–88.
- Long AJ, Roberts DH, Dawson S. 2006. Early Holocene history of the west Greenland Ice Sheet and the GH-8.2 event. *Quaternary Science Reviews* **25**: 904–922.
- Nesje A. 2002. A large rockfall avalanche in Oldedalen, inner Nordfjord, western Norway, dated by means of a sub-avalanche Salix sp.tree trunk. *Norsk Geologisk Tidsskrift* **82**: 59–62.
- Nishiizumi K. 2002. 10Be, 26Al, 36Cl, and 41Ca AMS standards: abstract O16-1. In: 9th Conference on Accelerator Mass Spectrometry (September 9–13, 2002, Nagoya, Japan), p. 130.
- Nishiizumi K, Finkel R, Klein J, *et al.* 1996. Cosmogenic production of ⁷Be and ¹⁰Be in water targets. *Journal of Geophysical Research* **101**: 22,225–22,232.
- Nishiizumi K, Imamura M, Caffee M, et al. 2007. Absolute calibration of ¹⁰Be AMS standards. *Nuclear Instruments and Methods in Physics Research B* **258**: 403–413.
- Nishiizumi K, Winterer E, Kohl C, *et al.* 1989. Cosmic ray production rates of ²⁶Al and ¹⁰Be in quartz from glacially polished rocks. *Journal of Geophysical Research* **94**: 17907–17915.
- Peltier W. 2004. Global glacial isostasy and the surface of the ice-age Earth: the ICE-5G model and GRACE. *Annual Review of Earth and Planetary Sciences* **32**: 111–149.
- Putnam A, Schaefer J, Barrell DJA, *et al.* 2010a. In situ cosmogenic 10Be production-rate calibration from the Southern Alps, New Zealand. *Quaternary Geochronology* **5**: 392–409.
- Putnam AE, Denton GH, Schaefer JM, *et al.* 2010b. Glacier advance in southern middle-latitudes during the Antarctic Cold Reversal. *Nature Geoscience* **3**: 700–704.
- Putnam A, Schaefer JM, Denton GH, *et al.* 2012. Regional climate control of glaciers in New Zealand and Europe during the preindustrial Holocene. *Nature Geoscience* **5**: 627–630.
- Ridge JC, Balco G, Bayless RL, et al. 2012. The new North American varve chronology: A precise record of southeastern Laurentide Ice

Sheet deglaciation and climate, 18.2-12.5 kyr BP, and correlations with Greenland ice core records. *American Journal of Science* **312**: 685–722.

- Rood DH, Hall S, Guilderson TP, et al. 2010. Challenges and opportunities in high precision Be-10 measurements at CAMS. *Nuclear Instruments and Methods in Physics Research B* 268: 730– 732.
- Schaefer JM, Denton GD, Kaplan MR, et al. 2009. High-frequency Holocene glacier fluctuations in New Zealand differ from the northern signature. *Science* **324**: 622–625.
- Staiger J, Gosse J, Toracinta R, et al. 2007. Atmospheric scaling of cosmogenic nuclide production: climate effect. Journal of Geophysical Research 112: B02205.
- Stone JO. 2000. Air pressure and cosmogenic isotope production. *Journal of Geophysical Research* **105**: 23,753–23,759.
- Stone JO, Balco GA, Sugden DE, et al. 2003. Holocene deglaciation of Marie Byrd Land, West Antarctica. Science 299: 99–102.
- Stone JO, Ballantyne CK, Fifield K. 1998. Exposure dating and validation of periglacial weathering limits, northwest Scotland. *Geology* 26: 587–590.
- Weidick A. 1968. Observations on some Holocene glacier fluctuations in West Greenland. *Meddelelser om Grønland* **165**: 202.
- Weidick A, Bennike O. 2007. Quaternary glaciation history and glaciology of Jakobshavn Isbræ and the Disko Bugt region, West Greenland: a review. *Geological Survey of Denmark and Greenland Bulletin* **14**: 1–71.
- Young NE, Briner JP, Axford Y, *et al.* 2011b. Response of a marineterminating Greenland outlet glacier to abrupt cooling 8200 and 9300 years ago. *Geophysical Research Letters* **38**: L24701.
- Young NE, Briner JP, Rood DH, *et al.* 2012. Glacier extent during the Younger Dryas and 8.2-ka event on Baffin Island, Arctic Canada. *Science* **337**: 1330–1333.
- Young NE, Briner JP, Rood DH, et al. 2013. Age of the Fjord Stade moraines in the Disko Bugt region, western Greenland, and the 9.3 and 8.2 ka cooling events. *Quaternary Science Reviews* 60: 76–90.
- Young NE, Briner JP, Stewart HAM, *et al.* 2011a. Response of Jakobshavn Isbrae, Greenland, to Holocene climate change. *Geology* **39**: 131–134.