Rapid Communication

West Greenland and global *in situ* ¹⁴C production-rate calibrations

NICOLÁS E. YOUNG,¹* JOERG M. SCHAEFER,¹ BRENT GOEHRING,² NATHANIEL LIFTON,² IRENE SCHIMMELPFENNIG³ and JASON P. BRINER⁴

¹Lamont-Doherty Earth Observatory, Columbia University, Palisades, NY 10964, USA ²Department of Earth and Atmospheric Sciences, Purdue University, West Lafayette, IN 47907, USA ³Aix-Marseille Université, CNRS-IRD, Collège de France, UM34 CEREGE, Aix en Provence, France ⁴Department of Geology, University at Buffalo, Buffalo, NY 14260, USA

Received 10 February 2014; Revised 9 April 2014; Accepted 1 May 2014

ABSTRACT: The *in situ* cosmogenic nuclide ¹⁴C is unique compared with other nuclides because of its short halflife, and when combined with longer-lived isotopes (e.g. ¹⁰Be), *in situ* ¹⁴C can be a powerful tool for deciphering recent and complex surface exposure histories. Like all *in situ* cosmogenic nuclides, quantifying earth surface processes with *in situ* ¹⁴C requires a well-constrained *in situ* ¹⁴C production rate. We present a production-rate calibration from an independently dated moraine in West Greenland, previously used as an *in situ* ¹⁰Be production-rate calibration site. The local *in situ* ¹⁴C production rate is 22.8 ± 1.4 atoms g⁻¹ a⁻¹ (69.28°N, 50.76° W; 350 m asl) and when scaled to sea level/high latitude using time-dependent Lal/Stone scaling (Lm), we calculate a spallation-only *in situ* ¹⁴C production rate of 12.0 ± 0.9 atoms g⁻¹ a⁻¹ and a ¹⁴C/¹⁰Be production rate ratio of 3.1 ± 0.2 . The West Greenland *in situ* ¹⁴C production rates. When combined, we calculate a global production rate of 12.1 ± 0.5 atoms g⁻¹ a⁻¹ (Lm). Copyright © 2014 John Wiley & Sons, Ltd.

KEYWORDS: Greenland; *in situ*¹⁴C; production rate; Jakobshavn Isbræ.

Introduction

In situ cosmogenic nuclides ¹⁰Be, ²⁶Al, ³⁶Cl, ²¹Ne and ³He measured in rock surfaces or sediments have revolutionized our ability to place empirical constraints on landscape processes (e.g. Granger et al., 2013). Whereas these isotopes are either stable (²¹Ne and ³He) or long-lived (e.g. ¹⁰Be halflife \sim 1.39 Ma), in situ ¹⁴C is a short-lived nuclide with a halflife of 5700 ± 30 years (www.nndc.bnl.gov; Roberts and Southon, 2007) making its use complementary to longer lived isotopes for several geomorphological applications, such as recent and complex exposure-burial histories (e.g. Goehring et al., 2011). In such complex exposure scenarios, in situ¹⁴C is relatively insensitive to periods of prior exposure that often result in isotopic inheritance for the longer-lived nuclides, because the portion of the in situ ¹⁴C inventory accumulated before the last ca. 25 ka will have decayed to undetectable levels. Under conditions of continuous exposure, *in situ* ¹⁴C's short half-life results in secular equilibrium (production = decay) after ca. 25-30 ka, and considering uncertainties in both measured concentrations and the secular equilibrium value, the utility of in situ ¹⁴C for exposure dating is limited to the last ca. 15 ka (Lifton et al., 2001).

There have been relatively few studies using *in situ* ¹⁴C measurements (e.g. Yokoyama *et al.*, 2004; Miller *et al.*, 2006; Anderson *et al.*, 2008; Goehring *et al.*, 2011; White *et al.*, 2011; Briner *et al.*, 2014; Hippe *et al.*, 2014). Difficulties isolating small amounts of *in situ* ¹⁴C from atmospheric ¹⁴C initially limited the application of *in situ* ¹⁴C (e.g. Jull *et al.*, 1989). However, a pioneering effort by Lifton *et al.* (2001) focusing exclusively on quartz aliquots (vs. whole rock) significantly improved the reliability of isolating *in situ* ¹⁴C and has made its extraction a more reliable technique (Pigati *et al.*, 2010). Nonetheless, *in situ* ¹⁴C extraction is still

*Correspondence: N. E. Young, as above. E-mail: nicolasy@ldeo.columbia.edu far from routine, given the small number of laboratories currently capable of extracting *in situ* ¹⁴C (e.g. ETH Zürich; LDEO, Purdue University) and the remaining challenges in low-background extraction. Studies harnessing *in situ* ¹⁴C's potential will undoubtedly increase as more laboratories become able to isolate *in situ* ¹⁴C and background ¹⁴C concentrations continue to fall (e.g. Hippe *et al.*, 2013; Goehring *et al.*, 2014).

The application of any cosmogenic nuclide requires knowledge of the nuclide-specific production rate. To develop a production-rate calibration, nuclide concentrations must be measured on a surface with a well-constrained exposure history with an independent age, typically derived from radiocarbon dating of organic material. To date, only three *in situ* ¹⁴C production-rate calibration experiments exist: Promontory Point (Utah, USA; Lifton *et al.*, 2001; Pigati, 2004; Miller *et al.*, 2006; Dugan *et al.*, 2008), the north-western Scottish Highlands (Dugan *et al.*, 2008) and New Zealand's Southern Alps (Schimmelpfennig *et al.*, 2012). We present an *in situ* ¹⁴C production-rate calibration from a site in West Greenland that was previously used for a ¹⁰Be calibration (Young *et al.*, 2013a), and then combine this value with existing values to present a 'global' production-rate calibration.

Calibration site: the Marrait moraine at Jakobshavn Isfjord, West Greenland

The Marrait moraine calibration site at Jakobshavn Isfjord (69.15°N, 50.90°W, 350 m asl) is part of the broader Baffin Bay–Arctic ¹⁰Be production-rate calibration dataset (Young *et al.*, 2013a). The Baffin Bay ¹⁰Be calibration comprises three independent production-rate calibrations: two from the Jakobshavn Isfjord region and one from Baffin Island. Of these three calibrations, the Marrait moraine dataset has the most precise independent age control, and thus we focus on the Marrait moraine to develop our *in situ* ¹⁴C production-rate

calibration. The full details of this site are provided in Young *et al.* (2013a), but here we provide a brief overview of the geomorphic setting.

The Jakobshavn Isfjord forefield is dominated by the Fjord Stade moraine system, comprising the older Marrait and younger Tasiussaq moraines (Weidick, 1968; Young et al., 2013b). Following initial deglaciation of the Jakobshavn Isfjord forefield ca. 10 ka, the Marrait moraine was deposited 9175 \pm 45 cal a BP (Young *et al.*, 2011). This is the mean age from bracketing ¹⁴C ages (n=4; aquatic macrofossils) immediately above and below a dominantly minerogenic sediment unit deposited in the proglacial-threshold Pluto Lake (i.e. Briner et al., 2010) during emplacement of the Marrait moraine. These radiocarbon ages all overlap at 1σ , suggesting that emplacement of the minerogenic unit, and thus the Marrait moraine, was nearly instantaneous (subcentennial; within dating resolution) and that the radiocarbon ages closely constrain the timing of moraine deposition. Moreover, it is unlikely that hard-water effects influenced our radiocarbon ages because Pluto Lake rests entirely within a crystalline bedrock catchment, and using macrofossils eliminates the potential complications of dating bulk sediments in the Arctic, which often yields radiocarbon ages that are too old (Wolfe et al., 2004). We measured in situ ¹⁴C concentrations in quartz from the same five Marrait moraine boulders that were used in the ¹⁰Be calibration (Table 1).

In situ ¹⁴C measurements and production rate assumptions

In situ ¹⁴C extraction was completed in the Lamont-Doherty Earth Observatory (LDEO) extraction line following procedures outlined by Schimmelpfennig *et al.* (2012) and Goehring *et al.* (2014). In situ ¹⁴C concentrations for five calibration samples were corrected for topographic shielding and sample thickness, but not corrected for potential snow cover. Samples are from open, wind-swept locations, thus minimizing the likelihood of snow cover. Corbett *et al.* (2011) estimated that nuclide concentrations corrected for snow cover in the Jakobshavn Isfjord region could increase by no more than ~7% for an exposure duration similar to that of the Marrait moraine. This value is almost certainly a significant overestimate because it does not account for sample location and it assumes that all snow remains on the landscape during the winter.

In situ ¹⁴C concentrations were blank-corrected using a long-term LDEO blank value of $118.09 \pm 39.28 \times 10^{3}$ ¹⁴C atoms (Table 2a, b), and for each sample, the LDEO blank concentration uncertainty (standard deviation (SD) of 33%) was propagated through in the quadrature (Table 2a). For completeness, we also present uncertainties, including the inter-lab scatter of recent CRONUS-A standard *in situ* ¹⁴C measurements (6.34%; Jull *et al.*, 2014; Table 2a). The arithmetic mean and SD of our corrected *in situ* ¹⁴C concentrations is $126.90 \pm 7.61 \times 10^3$ atoms g⁻¹. The scatter

in the distribution of the calibration *in situ* ¹⁴C concentrations (6%) is greater than the individual 1σ accelerator mass spectrometry (AMS) ¹⁴C measurement uncertainties (1%) and greater than the SD of the corresponding ¹⁰Be distribution (1%; Table 2a). The standard deviation in our in situ ¹⁴C dataset therefore most likely reflects scatter of the LDEO blank values, and reproducibility variations resulting from the complex *in situ* 14 C extraction procedure. The SD of our calibration *in situ* 14 C concentrations is consistent with the SDs of the LDEO CRONUS-A standard measurements (~4.7%; Table 2c) and independent CRONUS-A measurements completed at two other laboratories (\sim 5.0 and 5.7%). Whereas the uncertainty in the 10 Be production rate derived from the Marrait calibration samples (~2%; Young et al., 2013a, b) is dictated primarily by the independent age control precision and AMS measurement precision (~2%), our in situ ¹⁴C production rate uncertainty is strongly influenced by our intralaboratory measurement repeatability and the scatter of the LDEO long-term ¹⁴C blank values.

In situ ¹⁴C production occurs until the year of sample collection, 2011 AD for the Marrait moraine calibration samples, whereas traditional radiocarbon ages are reported and calibrated relative to the year 1950 AD. To synchronize these two timescales we added 61 years to the calibrated age of the Marrait moraine and rounded that value (including the uncertainty) to the nearest decade, resulting in an emplacement age for the Marrait moraine of 9240 ± 50 years before 2011. In situ ¹⁴C production occurs through spallation and muon capture. Production of *in situ* ¹⁴C by muons (3.8 atoms g^{-1} a^{-1} at sea level/high latitude) is determined separately following Heisinger et al. (2002a, b) and therefore our reported production rates using each scaling scheme are for spallation only (Table 3); our stated local (unscaled) production rate includes spallation and muon capture. We note that the muogenic component of in situ ¹⁴C production is not well constrained (Balco et al., 2008) and thus our empirically determined ¹⁴C spallogenic production rates and the ¹⁴C/¹⁰Be spallogenic production-rate ratio could change with any future revision of muogenic production rates. Sea-level/high-latitude in situ ¹⁴C production rates were determined using the five common scaling schemes [Lal, 1991; Stone, 2000 (St); timedependent Lal/Stone (Lm); Lifton et al., 2005 (Li); Desilets et al., 2006 (De); Dunai, 2001 (Du)] by selecting the bestfitting ¹⁴C production rate through a χ^2 minimization of the misfit between calculated and measured in situ ¹⁴C concentrations (Table 3). The χ^2 minimization technique accounts for the uncertainty in our independent age (~50 years), but the total uncertainty is dominated by the distribution and uncertainty in our measured in situ ¹⁴C concentrations.

The Marrait moraine calibration site has undergone $\sim 60 \text{ m}$ of isostatic uplift since deglaciation. To explore the effects of uplift on our stated production rates, we used a well-constrained regional emergence curve from near our field area and allowed ¹⁴C production to vary temporally with increasing elevation along the emergence curve (Long

Table 1.	Sample data.
----------	--------------

Sample	Latitude (DD)	Longitude (DD)	Elevation (m asl)	Boulder dimensions $(L \times W \times H)$ (m)	Thickness (cm)	Shielding correction	Thickness correction
11QOO-01	69.2844	-50.7569	350	$2 \times 1.5 \times 1.5$	1.5	0.995	0.988
11QOO-02	69.2844	-50.7569	350	$1.25 \times 1.25 \times 1.5$	1.5	0.995	0.988
11QOO-03	69.2844	-50.7566	350	$2.5 \times 1.25 \times 1.5$	1	0.995	0.992
11QOO-04	69.2844	-50.7562	350	$4 \times 1.5 \times 1.5$	1.25	0.995	0.989
11QOO-05	69.2842	-50.7528	350	$4 \times 4 \times 1.75$	1	0.996	0.992

For production-rate calculations we assume a rock density of $2.65 \,\mathrm{g \, cm^{-3}}$ and a neutron attenuation length of $160 \,\mathrm{g \, cm^{-2}}$.

Table 2a. In s	situ ¹⁴ C extra	ction details							
Sample	Quartz (g)	V _{CO2} (cc STP)	V _{dilute} (cc STP)	CAMS no.	$F_{ m m}$ measured	¹⁴ C blank-corrected (10 ³ atoms g ⁻¹)*	14 C shielding and thickness-corrected (10 ³ atoms g ⁻¹)*	¹⁰ Be shielding and thickness-corrected (10 ³ atoms g ⁻¹) [†]	Local ^{14}C production rate (atoms ^{14}C g $^{-1}$ a $^{-1}$)
11Q00-01 11Q00-02 11Q00-03 11Q00-04 11Q00-04	4.9620 5.1151 5.0894 5.1162 5.1705	0.0917 ± 0.0011 0.0304 ± 0.0004 0.0235 ± 0.0003 0.0503 ± 0.0006 0.0536 ± 0.0006	$\begin{array}{c} 1.505 \pm 0.017 \\ 1.402 \pm 0.016 \\ 1.367 \pm 0.016 \\ 1.370 \pm 0.016 \\ 1.312 \pm 0.015 \end{array}$	161365 162305 161561 162616 162617	0.0167 ± 0.0001 0.0206 ± 0.0002 0.0203 ± 0.0002 0.0199 ± 0.0001 0.0215 ± 0.0001 Mean	112.94 ± 8.55 (11.51) 133.07 ± 8.42 (11.92) 127.00 ± 8.42 (11.65) 123.40 ± 8.28 (11.39) 128.61 ± 8.18 (11.55) ± SD (all measurements)	$114.89 \pm 8.70 (11.35) \\ 135.36 \pm 8.56 (12.12) \\ 128.67 \pm 8.53 (11.80) \\ 125.40 \pm 8.42 (11.58) \\ 130.17 \pm 8.28 (11.69) \\ 126.90 \pm 7.61 (6.0\%)$	$56.54 \pm 1.88 (2.99) 56.77 \pm 1.08 (2.57) 57.84 \pm 1.13 (2.63) 56.32 \pm 1.26 (2.63) 57.04 \pm 1.27 (2.66) 56.90 \pm 0.59 (1.0%)$	$\begin{array}{c} 20.6 \pm 1.6 \\ 24.3 \pm 1.6 \\ 23.1 \pm 1.5 \\ 22.5 \pm 1.5 \\ 23.4 \pm 1.5 \\ 22.8 \pm 1.4 \ (6.1\%) \end{array}$
*The value in F ⁺ The value in F Sample weight ($F_m = the^{-1.4}C/^{1}$ corrected for tc ^{1.4} C production	parentheses in oarentheses ir t, gas volume 1 ³ C ratio of t opographic sh 1 rates for eac	n this column is the unc n this column is the unc after carbon extraction the sample vs. that of hielding and sample thi ch sample.	certainty that include certainty that include tertainty that include i from quartz (V_{CO_2}) a standard, both coic a standard, both coickness (see Table 1)	es propagation of es propagation of and after additio prected to $\delta^{13}C^{13}$.). Also given are	the CRONUS-A stand the CRONUS-N stand n of ¹⁴ C-free dilution = -25% VPDB and the matching ¹⁰ Be cor	lard inter-lab scatter (6.3%; lard inter-lab scatter (4.1%; gas (V _{dilute}), cc STP = cubic o 1950 CE), blank-correcte ncentrations (Young et al., 2	Jull <i>et al.</i> , 2014). Jull <i>et al.</i> , 2014). centimeters at standard te d^{-14} C concentrations wit (013a), the $^{-14}$ C/ ¹⁰ Be conc	mperature and pressure, me h analytical uncertainties, a entration ratios and the loca	asured fraction modern and ¹⁴ C concentrations I time-integrated in situ
Table 2b. In S	<i>situ</i> ¹⁴ C blank	k and CRONUS-A data.							
Sample		Quartz (g)	V _{CO2}	(cc STP)	V _{dilute} (co	c STP) CA	MS no.	$F_{\rm m}$ measured	^{14}C (10 ³ atoms)
Blank 2-17-13 Blank 4-1-13 Blank 6-13-13 Blank 8-13-13		n/a n/a 5.0150	0.02183 0.01933 0.01950 0.0225	± 0.00025 ± 0.00022 ± 0.00022 ± 0.00023	$1.328 \pm ($ $1.363 \pm ($ $1.441 \pm ($ $1.301 \pm ($	0.015 10 0.016 10 0.017 10 0.016 10	0875 51364 52306 53860	0.0053 ± 0.0001 0.0047 ± 0.0001 0.0040 ± 0.0001 0.0058 ± 0.0001	114.17 ± 12.32 92.61 ± 12.68 69.01 ± 13.28 129.44 ± 12.37
Blank 8-13-13 LDEO long-teri	is a 'quartz' m blank valu	blank. Quartz is from a e of 118.09 ± 39.28 × 1	t recently exposed m 10 ³ ¹⁴ C atoms. n/a, N	noraine boulder (Not applicable.	<10 years) in the Fran	ız Josef glacier forefield (Ne	w Zealand). The measured	I number of ¹⁴ C atoms is inc	listinguishable from the
Table 2c. LD	EO CRONUS	3-A <i>in situ</i> ¹⁴ C data.							
Sample		Quartz (g)	Vc	co2 (cc STP)	V _{dilute} (C	c STP) CAN	4S no.	m measured	$^{14}C (10^3 \text{ atoms g}^{-1})$
CRONUS-A		5.0045	0.06	154 ± 0.0007	1.724 土	0.020 r	ı/a 0.0	667 ± 0.0013	642.68 ± 32.80
CRONUS-A-2	-	4.6503	0.05	995 ± 0.0007	$1.250 \pm$	0.014	1/a 0.0	754 ± 0.0010	591.54 ± 17.88
CRONUS-A-N	M-2	4.9912	0.00	710 ± 0.0008	1.437 ± 1.437 ±	0.017 15	1165 0.0	600 ± 0.0004	$030./0 \pm 12.14$ 680.81 ± 12.26
CRONUS-A-3-	-9-11	5.0050	0.07	591 ± 0.0009	1.433 土	0.016 15	0.0 0.0	805 ± 0.0004	679.39 ± 12.00
CRONUS-A-3-	-28-11	5.0211	0.07	520 ± 0.0009	1.427 ±	0.016 15	1901 0.0	1796 ± 0.0004	665.73 ± 11.85
	61-02-0	4.9002	- (n·n	091 ± 0.0009	± cι c.1	0.0.0	0.0 Mean±SD (all n	1 45 ± 0.0005 neasurements)	655.17 ± 30.87 (4.7)
CRONUS-A an	nd CRONUS-	A-2 were blank correct	ted using the LDEO	2009 blank value	e of 302.09 ± 126.27 >	× 10 ³ ¹⁴ C atoms (see Goehr	ing et al., 2014). All other	samples are blank-correcte	d using the LDEO long-
Goehring <i>et al.</i>	present) valu . (2014), whic	e or । । । ठ.७७ ± ३७.४४ × । ch were corrected using	g a long-term blank v	g this latter blank value of 124.67 d	$\simeq 42.56 \times 10^3$ ¹⁴ C atom	uy nigner concentrations (< ns.	<1 %) 10f A-INM-1, A-INM	-2, A-3-9-11 and A-3-26-11	unan unose reported by

403

Figure 1. Best-fit *in situ* ¹⁴C production rates (spallation only) using the St, Li and Lm scaling schemes. The horizontal line and gray band is the arithmetic mean and SD of the production-rate values from the four calibration datasets (value at the top of each panel; Table 3).

et al., 2006, 2011; Young et al., 2013a). Applying this correction results in a production rate that is ca. 5% higher than production rates calculated using a constant elevation. This correction, however, would probably result in a maximum-limiting production rate because other processes counteract the effects of isostatic uplift, including changes in air pressure driven by ice sheets and eustatic sea-level change (Staiger et al., 2007; Young et al., 2013a). Lower atmospheric pressure at the ice margin due to katabatic wind effects would lead to an artificially high production rate. For sites exposed since the Last Glacial Maximum, this effect could have been up to $\sim 10\%$ (Staiger et al., 2007), but this should be considered a maximum value here as our calibration site has only been exposed ca. 9200 years. Changes in eustatic sea level near our site would also counteract the effects of isostatic uplift, but the magnitude of this correction is probably minimal (Osmaston, 2005). Adapting the arguments made by Young et al. (2013a) and based on the controversial discussion within the surface-exposure dating community regarding the importance of correcting production rates for isostatic rebound (versus countering effects such as sea-level change and air pressure variations), we prefer to use and discuss production rates here that do not include an uplift correction. However, we include rebound-corrected production rates for reference in Table 3.

An *in situ* ¹⁴C production rate from West Greenland

Dividing the average in situ ¹⁴C concentration of the five calibration samples $(126.90 \pm 7.61 \times 10^3 \text{ atoms g}^{-1})$ by the independent age of the Marrait moraine $(9240 \pm 50 \text{ years})$, results in a time-integrated local in situ ¹⁴C production rate at our calibration site (69.28°N, 50.76°W; 350 m asl) of 22.8 ± 1.4 atoms g⁻¹ a⁻¹ (value accounts for the ¹⁴C decay constant). Our calculated in situ ¹⁴C production rates scaled to sea level/high latitude using the St, Lm, De, Du and Li scaling schemes (for convention) are 12.0 ± 0.9 , 12.0 ± 0.9 , 12.6 ± 0.9 , 12.4 ± 0.9 and 13.3 ± 1.0 atoms g⁻¹ a⁻¹, respectively (Table 3). In addition, the spallation production-rate ratios of ¹⁴C/¹⁰Be for all five scaling schemes are 3.0- 3.1 ± 0.2 (Table 3), which agree with the spallation $^{14}\text{C}/^{10}\text{Be}$ production-rate ratio of 3.0 ± 0.2 determined in the New Zealand calibration samples and with numerically simulated ¹⁴C/¹⁰Be production-rate ratios of 3.1 and 3.2 (Table 3; Masarik and Reedy, 1995; Schimmelpfennig et al., 2012; Argento et al., 2013). We caution that although recent modeling studies support our empirically derived production ratio from a high-latitude and low-altitude location, these

Table 3.	Best-fit spallogenic	production rates (PR) re	eferenced to sea level/high	latitude using the fiv	e common scaling schen	les.			
Scaling	West Greenland (atoms ¹⁴ C g ⁻¹ a ⁻¹)*	West Greenland (atoms ${}^{14}C$ g ${}^{-1}$ a ${}^{-1}$) uplift*	West Greenland (atoms ${}^{10}\text{Be}\ \mathrm{g}^{-1}\ \mathrm{a}^{-1})$	West Greenland ¹⁴ C/ ¹⁰ Be PR ratio	New Zealand (atoms ¹⁴ C g ⁻¹ a ⁻¹)*	New Zealand ¹⁴ C/ ¹⁰ Be PR ratio	Promontory Point (atoms ${}^{14}C$ g $^{-1}$ a $^{-1}$)	Scottish Highlands (atoms ¹⁴ C g ⁻¹ a ⁻¹)	2014 global (atoms 14C g-1 a-1)+
St	$12.0 \pm 0.9 \ (1.1)$	$12.6 \pm 0.9 \ (1.2)$	3.9 ± 0.1	3.1 ± 0.2	$11.7 \pm 0.9 \ (1.1)$	3.0 ± 0.2	12.9 ± 0.6	12.4 ± 1.6	$12.3 \pm 0.5(12.6 \pm 0.4)$
De	$12.6 \pm 0.9 \; (1.2)$	$13.2 \pm 0.9 \ (1.3)$	4.1 ± 0.1	3.1 ± 0.2	$11.8 \pm 0.9 \ (1.2)$	3.0 ± 0.3	13.1 ± 0.7	13.0 ± 1.7	$12.6\pm0.6(12.8\pm0.6)$
Du	$12.4 \pm 0.9 \; (1.2)$	$13.0 \pm 0.9 \ (1.2)$	4.1 ± 0.1	3.0 ± 0.2	$11.9 \pm 0.9 \ (1.2)$	3.0 ± 0.3	13.1 ± 0.7	13.1 ± 1.7	$12.6\pm0.6(12.8\pm0.5)$
	$13.3 \pm 1.0 \ (1.3)$	$14.0 \pm 1.1 \ (1.3)$	4.4 ± 0.1	3.0 ± 0.2	$12.7 \pm 1.0 \ (1.3)$	3.0 ± 0.3	14.1 ± 0.7	13.8 ± 1.8	$13.5 \pm 0.6(13.7 \pm 0.6)$
Lm	$12.0\pm0.9^{\pm}$ (1.1)	$12.6\pm0.9~(1.2)$	3.9 ± 0.1	$3.1 \pm 0.2^{\pm}$	$11.4 \pm 0.9 \; (1.1)$	3.0 ± 0.2	12.5 ± 0.6	12.4 ± 1.6	$12.1\pm0.5(12.2\pm0.5)$
St=Lal (this stud and Dug sites. All *Values	1991), Stone (2000), I y, 10Be from Young ε 3an <i>et al.</i> (2008). The uncertainties are repc in parentheses are the	De = Desilets et al. (200) et al., 2013a). New Zeal Scottish Highlands in s orted at 1 σ .	36), Du = Dunai (2001), Li land in situ ¹⁴ C values are situ ¹⁴ C dataset is from Du cluding the inter-lab scatter	= Lifton <i>et al.</i> (2005 from Schimmelpfeni gan <i>et al.</i> (2008). Tl in CRONUS-N stan	5), Lm = time-dependent nig et al. (2012), Promont he last column shows the dard measurements (Jull		ireenland refers to the <i>N</i> ⁴ C values are from Lifton s and standard deviatior	larrait moraine calibrati. 1 <i>et al.</i> (2001), Pigati (20 1s of the best-fit values t	on site (in situ ¹⁴ C from 004), Miller <i>et al.</i> (2006) rom all four calibration
⁺ Values ⁺ Indicate	in parentheses are cal	culated using the uplift- ded values.	-corrected West Greenland	l values. Note: the P	romontory Point and Scot	tish Highlands va	lues do not incorporate t	he CRONUS-N inter-la	o scatter.

same studies suggest that the production ratio may change as a function of altitude, and perhaps latitude, and thus the production ratio may differ slightly from site to site (Argento *et al.*, 2013; Lifton *et al.*, 2014). The West Greenland production rate of 12.0 ± 0.9 atoms g⁻¹ a⁻¹ (Lm) is statistically indistinguishable from the New Zealand, Promontory Point and Scottish Highlands production rates of 11.4 ± 0.9 , 12.5 ± 0.6 and 12.4 ± 1.6 atoms g⁻¹ a⁻¹ (Lm), respectively (Table 3).

Combining all four calibration datasets (arithmetic mean \pm SD) results in 'global' ¹⁴C production rates of 12.3 ± 0.5 (St), 12.6 ± 0.6 (De), 12.6 ± 0.6 (Du), 13.5 ± 0.6 (Li) and 12.1 ± 0.5 (Lm) atoms g⁻¹ a⁻¹ (Table 3). Note that the use of a 'global' ¹⁰Be production rate comprising several individual calibration datasets (Balco et al., 2008) resulted in cases where calculated ¹⁰Be ages were incompatible with traditional radiocarbon constraints (e.g. Balco et al., 2009; Briner et al., 2012). However, several recent local in situ ¹⁰Be production-rate calibrations have resulted in an overall reduction in both the average ¹⁰Be production value and its uncertainties (e.g. Balco et al., 2009; Putnam et al., 2010; Young et al., 2013a), such that site-to-site discrepancies evident in the global ¹⁰Be dataset are greatly reduced. For locations lacking a local production-rate calibration, our global values for *in situ* ¹⁴C spallogenic production are reliable given the stated uncertainties, at least until in situ¹⁴C measurement precision improves (e.g. via low and stable blank values) to the point that existing and future calibration datasets are statistically incompatible with the global values reported here.

Conclusions

Our West Greenland *in situ* ¹⁴C production rate (12.0 ± 0.9) atoms g⁻¹ a⁻¹; Lm) is indistinguishable from the three previously reported production rates from Promontory Point $(12.5\pm0.6;$ Lm), the Scottish Highlands $(12.4\pm1.6;$ Lm) and New Zealand $(11.4\pm0.9;$ Lm). The West Greenland ¹⁴C/¹⁰Be production-rate ratio of 3.1 ± 0.2 (Lm) is consistent with the empirically derived ¹⁴C/¹⁰Be production-rate ratio from New Zealand and independently modeled estimates of the production rate calibrations, the current *in situ* ¹⁴C 'global' production rate is 12.1 ± 0.5 atoms g⁻¹ a⁻¹ (Lm), a value that is subject to change as more calibration studies become available.

Acknowledgements. N.E.Y. acknowledges support from an LDEO post-doctoral fellowship. N.E.Y. and J.M.S. acknowledge support from the Comer Science and Educational Foundation and the Lamont Climate Center. We thank Tom Guilderson at the Lawrence Livermore National Laboratory-Center for AMS for ¹⁴C measurements. We also thank Maarten Lupker and Yusuke Yokoyama for constructive reviews that helped improve the manuscript. This work was supported in part by NSF-EAR No. 0922165 and No. 0936077. This is LDEO contribution #7799.

Abbreviations. AMS, accelerator mass spectrometry; LDEO, Lamont-Doherty Earth Observatory

References

- Anderson RK, Miller GH, Briner JP, *et al.* 2008. A millennial perspective on Arctic warming from ¹⁴C in quartz and plants emerging from beneath ice caps. *Geophysical Research Letters* **35**: L01502.
- Argento DC, Reedy RC, Stone JO. 2013. Modeling the earth's cosmic radiation. Nuclear Instruments and Methods in Physics Research

Section B: Beam Interactions with Materials and Atoms **294**: 464–469.

- Balco G, Stone J, Lifton N, *et al.* 2008. A complete and easily accessible means of calculating surface exposure ages or erosion rates from ¹⁰Be and ²⁶Al measurements. *Quaternary Geochronology* **3**: 174–195.
- Balco G, Briner JP, Finkel RC, *et al.* 2009. Regional beryllium-10 production rate calibration for late-glacial northeastern North America. *Quaternary Geochronology* **4**: 93–107.
- Briner JP, Stewart HAM, Young NE, et al. 2010. Using proglacialthreshold lakes to constrain fluctuations of the Jakobshavn Isbræ ice margin, western Greenland, during the Holocene. *Quaternary Science Reviews* **29**: 3861–3874.
- Briner JP, Young NE, Goehring BM, *et al.* 2012. Constraining Holocene ¹⁰Be production rates in Greenland. *Journal of Quaternary Science* **27**: 2–6.
- Briner JP, Lifton NA, Miller GH, *et al.* 2014. Using in situ cosmogenic ¹⁰Be, ¹⁴C, and ²⁶Al to decipher the history of polythermal ice sheets on Baffin Island, Arctic Canada. *Quaternary Geochronology* **19**: 4–13.
- Corbett LB, Young NE, Bierman PR, *et al.* 2011. Paired bedrock and boulder ¹⁰Be concentrations resulting from early Holocene ice retreat near Jakobshavn Isfjord, western Greenland. *Quaternary Science Reviews* **30**: 1739–1749.
- Desilets D, Zreda M, Prabu T. 2006. Extended scaling factors for in situ cosmogenic nuclides: new measurements at low latitude. *Earth and Planetary Science Letters* **246**: 265–276.
- Dugan B, Lifton N, Jull AJT. 2008. New production rate estimates for in situ cosmogenic 14C. *Geochimca et Cosmochimica Acta* **72**: A231.
- Dunai TJ. 2001. Influence of secular variation of the geomagnetic field on production rates of in situ produced cosmogenic nuclides. *Earth and Planetary Science Letters* **193**: 197–212.
- Goehring BM, Schaefer JM, Schluechter C, *et al.* 2011. The Rhône glacier was smaller than today for most of the Holocene. *Geology* **39**: 679–682.
- Goehring BM, Schimmelpfennig I, Schaefer JM. 2014. Capabilities of the Lamont–Doherty Earth Observatory in situ ¹⁴C extraction laboratory updated. *Quaternary Geochronology* **19**: 194–197.
- Granger DE, Lifton NA, Willenbring JA. 2013. A cosmic trip: 25 years of cosmogenic nuclides in geology. *Geological Society of America Bulletin* **125**: 1379–1402.
- Heisinger B, Lal D, Jull AJT, et al. 2002a. Production of selected cosmogenic radionuclides by muons. Earth and Planetary Science Letters 200: 345–355.
- Heisinger B, Lal D, Jull AJT, *et al.* 2002b. Production of selected cosmogenic radionuclides by muons: 2. Capture of negative muons. *Earth and Planetary Science Letters* **200**: 357–369.
- Hippe K, Kober F, Wacker L, *et al.* 2013. An update on in situ cosmogenic ¹⁴C analysis at ETH Zürich. *Nuclear Instruments and Methods in Physics Research B* **294**: 81–86.
- Hippe K, Ivy-Ochs S, Kober F, *et al.* 2014. Chronology of lateglacial ice flow reorganization and deglaciation in the Gotthard Pass area, Central Swiss Alps, based on cosmogenic ¹⁰Be and in situ ¹⁴C. *Quaternary Geochronology* **19**: 14–26.
- Jull AJT, Donahue DJ, Linick TW. 1989. Spallogenic ¹⁴C in highaltitude rocks and Antarctic meteorites. *Radiocarbon* **31**: 719– 724.
- Jull AJT, Scott EM, Bierman P. 2014. In press. The CRONUS-Earth inter-comparison for cosmogenic isotope anlysis. *Quaternary Geochronology*. [doi:10.1016/jquageo.2013.09.003]
- Lal D. 1991. Cosmic ray labeling of erosion surfaces: in situ nuclide production rates and erosion models. *Earth and Planetary Science Letters* **104**: 424–439.
- Lifton NA, Jull AJT, Quade J. 2001. A new extraction technique and production rate estimate for in situ cosmogenic ¹⁴C in quartz. *Geochimica et Cosmochimica Acta* **65**: 1953–1969.
- Lifton NA, Bieber JW, Clem JM, et al. 2005. Addressing solar modulation and long-term uncertainties in scaling secondary cosmic rays for in situ cosmogenic nuclide applications. *Earth and Planetary Science Letters* **239**: 140–161.
- Lifton NA, Sato T, Dunai TJ. 2014. Scaling *in situ* cosmogenic nuclide production rates using analytical approximations to atmospheric

cosmic-ray fluxes. *Earth and Planetary Science Letters* **386**: 149–160.

- Long AJ, Roberts DH, Dawson S. 2006 Early Holocene history of the west Greenland Ice Sheet and the GH-8.2 event. *Quaternary Science Reviews* **25**: 904–922.
- Long AJ, Woodroffe SA, Roberts DH, et al. 2011. Isolation basins, sea-level changes and the Holocene history of the Greenland Ice sheet. *Quaternary Science Reviews* **30**: 3748–3768.
- Masarik J, Reedy RC. 1995. Terrestrial cosmogenic-nuclide production systematics calculated from numerical simulations. *Earth and Planetary Science Letters* **136**: 381–395.
- Miller GH, Briner JP, Lifton NA, et al. 2006. Limited ice-sheet erosion and complex exposure histories derived from in situ cosmogenic ¹⁰Be, ²⁶Al, and ¹⁴C on Baffin Island, Arctic Canada. Quaternary Geochronology 1: 74–85.
- Osmaston HA. 2005. Should Quaternary sea-level changes be used to correct glacier ELAs, vegetation belt altitudes and sea level temperatures for inferring climate changes. *Quaternary Research* **65**: 244–251.
- Pigati JS. 2004. Experimental developments and application of carbon-14 and in situ cosmogenic nuclide dating techniques. PhD Thesis, University of Arizona.
- Pigati JS, Lifton NA, Jull AJT, et al. 2010. A simplified in situ cosmogenic ¹⁴C extraction system. Radiocarbon 52: 1236–1243.
- Putnam A, Schaefer J, Barrell DJA, *et al.* 2010 In situ cosmogenic 10Be production-rate calibration from the Southern Alps. *New Zealand. Quaternary Geochronology* **5**: 392–409.
- Roberts ML, Southon JR. 2007. A preliminary determination of the absolute ¹⁴C/¹²C ratio of OX-I. *Radiocarbon* **49**: 441–445.

- Schimmelpfennig I, Schaefer JM, Goehring B, et al. 2012. Calibration of the *in situ* cosmogenic ¹⁴C production rate in New Zealand's Southern Alps. *Journal of Quaternary Science* **27**: 671–674.
- Staiger J, Gosse J, Toracinta R, et al. 2007. Atmospheric scaling of cosmogenic nuclide production: climate effect. Journal of Geophysical Research 112: B02205.
- Stone JO. 2000. Air pressure and cosmogenic isotope production. *Journal of Geophysical Research* **105**: 23,753–23,759.
- Weidick A. 1968. Observations on some Holocene glacier fluctuations in West Greenland. *Meddelelser Om Grønland* **165**: 202.
- White D, Fülö R-H, Bishop P, *et al.* 2011. Can in-situ cosmogenic ¹⁴C be used to assess the influence of clast recycling on exposure dating of ice retreat in Antarctica? *Quaternary Geochronology* **6**: 289–294.
- Wolfe AP, Miller GH, Olsen CA, et al. 2004. Geochronology of high latitude lake sediments. In *Long-Term Environmental Change in Arctic and Antarctic Lakes*, Pienitz R, Douglass M, Smol J (eds). Springer Verlag: Dordrecht; 19–52.
- Yokoyama Y, Caffee MC, Southon JR, *et al.* 2004. Measurements of in situ produced ¹⁴C in terrestrial rocks. *Nuclear Instruments and Methods in Physics Research B* **223**: 253–258.
- Young NE, Briner JP, Axford Y, *et al.* 2011. Response of a marineterminating Greenland outlet glacier to abrupt cooling 8200 and 9300 years ago. *Geophysical Research Letters* **38**: L24701.
- Young NE, Schaefer JM, Briner JP, *et al.* 2013a. A ¹⁰Be productionrate calibration for the Arctic. *Journal of Quaternary Science* **28**: 515–526.
- Young NE, Briner JP, Rood DH, et al. 2013b. Age of the Fjord Stade moraines in the Disko Bugt region, western Greenland, and the 9.3 and 8.2 ka cooling events. *Quaternary Science Reviews* 60: 76–90.