JQS Journal of Quaternary Science

Deglaciation of coastal south-western Spitsbergen dated with *in situ* cosmogenic ¹⁰Be and ¹⁴C measurements

NICOLÁS E. YOUNG,¹* JENNIFER LAMP,¹ TOBY KOFFMAN,¹ JASON P. BRINER,² JOERG SCHAEFER,¹ ENDRE F. GJERMUNDSEN,^{3,4} HENRIETTE LINGE,⁵ SUSAN ZIMMERMAN,⁶ THOMAS P. GUILDERSON,⁶ DEREK FABEL⁷ and ANNE HORMES^{3,8}

¹Lamont-Doherty Earth Observatory, Columbia University, Palisades, NY, USA

⁴Department of Business and IT, University of South-Eastern Norway, Bø, Norway

⁵University of Bergen, Bergen, Norway

⁶Lawrence Livermore National Laboratory, Center for Accelerator Mass Spectrometry, Livermore, CA, USA

⁷Scottish Universities Environmental Research Centre, East Kilbride, UK

⁸Department of Earth Sciences, University of Gothenburg, Gothenburg, Sweden

Received 15 December 2017; Revised 23 May 2018; Accepted 11 June 2018

ABSTRACT: The Svalbard–Barents ice sheet was predominantly a marine-based ice sheet and reconstructing the timing and rate of its decay during the last deglaciation informs predictions of future decay of marine-based ice sheets (e.g. West Antarctica). Records of ice-sheet change are routinely built with cosmogenic surface exposure ages, but in some regions, this method is complicated by the presence of isotopic inheritance yielding artificially old and erroneous exposure ages for the most recent deglaciation. We present 46 ¹⁰Be ages from south-western Spitsbergen that, when paired with *in situ* ¹⁴C measurements (n=5), constrain the timing of coastal deglaciation following the last glacial maximum. ¹⁰Be and *in situ* ¹⁴C measurements from bedrock along a ~400-m elevation transect reveal inheritance-skewed ¹⁰Be ages, whereas *in situ* ¹⁴C dated transect, combined with three additional ¹⁰Be-dated coastal sites, show that the south-western margin of the Svalbard–Barents ice sheet retreated out of the Norwegian Sea between ~18 and 16 ka. *In situ* ¹⁴C measurements of long-lived nuclides are compromised by isotopic inheritance. © 2018 John Wiley & Sons, Ltd.

KEYWORDS: cosmogenic nuclides; ice sheets; in situ¹⁴C; Quaternary; Svalbard.

Introduction

Geological records that constrain the timing and magnitude of ice-sheet demise during the last deglaciation provide important insights into the response of ice sheets to a warming climate. At its maximum extent during the last glacial cycle, the Svalbard-Barents ice sheet (SBIS) was part of the broader Eurasian ice sheet complex with a sea-level equivalent of \sim 24 m (Hughes *et al.*, 2016). Resting at the north-western limit of the SBIS, the Svalbard Archipelago is one of the few terrestrial locations within the primarily marine-based SBIS footprint. Accordingly, much of our current understanding of how the SBIS evolved through the last glacial cycle is based on archives of ice-sheet change present on Svalbard (Fig. 1; Landvik et al., 1998, 2014; Hormes et al., 2013; Ingólfsson and Landvik, 2013; Eccleshall et al., 2016). Gauging how the SBIS decayed at the end of the last glaciation can help identify mechanisms of global climate change and inform ice sheet models used to explore the sensitivity of marine-based ice sheets to various climatic and glaciological parameters (Stokes et al., 2015; Patton et al., 2016).

Cosmogenic nuclide measurements are often used to develop detailed chronologies of ice sheet and glacier change (e.g. Balco, 2011; Granger *et al.*, 2013; Ivy-Ochs and Briner, 2014). On Svalbard, there have been several efforts to

*Correspondence: Nicolás E. Young, as above. Email: nicolasy@ldeo.columbia.edu reconstruct SBIS behavior during the last glacial cycle using cosmogenic nuclides with mixed success. One limitation is that much of Svalbard does not host the quartz-bearing rocks required for ¹⁰Be measurements, and thus the geographical scope of cosmogenic nuclide-based measurements is relatively restricted. Nonetheless, the first ¹⁰Be ages from Svalbard were used to propose that ice-free regions in northwestern Svalbard existed during the last glacial maximum (Landvik et al., 2003). However, while ¹⁰Be ages older than \sim 75 ka defined the maximum SBIS thickness in NW Svalbard, these old ¹⁰Be ages do not preclude the presence of widespread and systematic isotopic inheritance on the landscape. Using the same approach, several ¹⁰Be ages from western Svalbard and Nordaustlandet help constrain the dimensions of the SBIS during the last glacial cycle (Hormes et al., 2011, 2013; Gjermundsen et al., 2013; Landvik et al., 2013; Fig 1). Most recently, ¹⁰Be and ²⁶Al measurements from high-elevation bedrock suggest that Svalbard's alpine landscape has survived repeated glaciations through the Quaternary, suggestive of a minimally erosive ice sheet (Gjermundsen et al., 2015). Although these studies place broad constraints on SBIS behavior through the last glacial cycle and longer, they also suffer from somewhat geographically and chronologically scattered ¹⁰Be ages, making it difficult to develop detailed millennial-scale chronologies of ice-sheet change. Collectively, these studies highlight a landscape that is challenging for developing cosmogenicnuclide based chronologies of ice-sheet change, probably

²Department of Geology, University at Buffalo, Buffalo, NY, USA

³University Centre of Svalbard, Longyearbyen, Norway

Figure 1. Spitsbergen with locations referred to in the text and the 21 ka ice limit from Hughes et al. (2016; dashed line). KE -Kapp Ekholm, H – Hornsund, and IF - Isfjorden. Previously published radiocarbon (cal ka BP) and ¹⁰Be ages across Spitsbergen from previous studies constraining ice margin position are presented in two groups: (i) ages that mark the initial timing of retreat or thinning of the ice margin from the Last Glacial Maximum (LGM) extent (white ovals with black text), and (ii) oldest coastal ages that constrain deglaciation following the LGM maximum extent and deglaciation of the present coastline (black ovals/white text). Location numbers are linked to Table 4; see Table 4 for sample details and references. Locations and ⁰Be ages marked with stars and boxes are from this study. Isfjorden and Hornsund transects from Fig. 4 are marked with black lines. Base and inset maps are from Jakobsson et al. (2012). [Colour figure can be viewed at wileyonlinelibrary.com]

due to the widespread presence of non-erosive cold-based ice and its variable imprint on the landscape (Landvik *et al.*, 2014).

Surface exposure dating in glacial landscapes relies on the assumption that cosmogenic nuclides that accumulated on the landscape before the most recent episode of exposure have been removed by $\sim 2-3$ m of subglacial erosion during the latest interval of ice cover. In settings dominated by warm-based and erosive ice, this assumption is typically valid, but at high-latitude locations, minimally erosive polythermal and cold-based ice can result in cosmogenic nuclide datasets that are influenced by isotopic inheritance (e.g. Håkansson et al., 2008; Balco et al., 2014; Young et al., 2016). Isotopic inheritance occurs when ice is unable to erode through the \sim 2–3 m of rock required to reset the cosmogenic clock between periods of surface exposure and the resulting nuclide concentration is an aggregate of two or more distinct periods of exposure. Inheritance is also possible within landscapes where despite 2-3 m of erosion during the latest interval of glaciation, deep subsurface nuclide accumulation in periods of prolonged surface exposure between

glaciations results in excess nuclide inventories that pre-date the most recent period of ice cover (Briner *et al.*, 2016).

Whereas long-lived or stable nuclides such as ${}^{10}Be$ ($t_{1/2}$ = 1.387 Ma; Chmeleff et al., 2010) must be removed from the landscape via sufficient subglacial erosion, in situ ¹⁴C is unique because its relatively short half-life ($t_{1/2} = 5730$ years) allows for previously accumulated in situ ¹⁴C to decay away to undetectable levels after \sim 30 ka of simple burial of a surface by ice without the aid of subglacial erosion. In situ ¹⁴C measurements are perhaps most powerful when paired with ¹⁰Be to resolve complex exposure-burial histories (e.g. Goehring et al., 2011), but in situ¹⁴C measurements are also particularly attractive in environments characterized by minimally erosive ice that is not capable of resetting the cosmogenic clock between periods of exposure. Measuring several nuclides in conjunction yields a more complete quantitative understanding of ice-sheet fluctuations over multiple time-scales, but in situ ¹⁴C measurements are also well-suited to constrain the timing of the last deglaciation in settings where long-lived nuclides such as ¹⁰Be run a much higher risk of carrying inheritance from prior exposure (e.g.

Briner *et al.*, 2014; Johnson *et al.*, 2017). Despite its potential, *in situ* ¹⁴C is rarely used because of the difficulty of extracting ¹⁴C from the mineral quartz in geological samples (e.g. Lifton *et al.*, 2001; Balco *et al.*, 2016).

We present 46 ¹⁰Be ages, five *in situ* ¹⁴C ages and five ²⁶Al ages from four sites in south-western Spitsbergen to constrain the timing of coastal deglaciation following the last glacial maximum. A component of our ¹⁰Be ages are influenced by isotopic inheritance, but our population of ¹⁰Be ages is sufficiently large to constrain the timing of coastal deglaciation in south-western Spitsbergen. Combined *in situ* ¹⁰Be, ¹⁴C and ²⁶Al in five bedrock samples along a ~400-m elevation transect reveal that ¹⁰Be and ²⁶Al concentrations yield an ambiguous timing of deglaciation and a complex long-term exposure history but corresponding *in situ* ¹⁴C measurements robustly constrain millennial-scale ice-sheet thinning.

Setting and methods

Our study area is Hornsund (76.97 $^{\circ}$ N, 15.70 $^{\circ}$ E), located in south-western Spitsbergen (Figs 1 and 2). Several independent

glaciers feed into the primary Hornsund channel and, at present, $\sim 800 \text{ km}^2$ of Hornsund's $\sim 1200 \text{ km}^2$ drainage basin is glaciated with glacier retreat during the observational record averaging \sim 70 m a⁻¹ (Błaszczyk *et al.*, 2013). At the head of Hornsund, a tidewater glacier is currently located ~13 km east of its late Holocene maximum extent, which is marked by a prominent moraine that was emplaced at Treskelen just before 1.9 ± 0.3 ka based on recent ¹⁰Be ages (n=4; Philipps et al., 2017). During the last glacial cycle, Hornsund hosted an SBIS outlet glacier that was part of the western margin of the SBIS. The western SBIS is thought to have advanced out to the continental shelf three times during the last glacial cycle during Marine Isotope Stage (MIS) 5d, MIS 5b, and MIS 2 with retreat from the outer shelf underway as early as ~23-20 ka (Mangerud et al., 1998; Jessen et al., 2010; Hormes et al., 2013; Eccleshall et al., 2016). A single minimum limiting radiocarbon age from near Hornsund indicates that by \sim 12.1 cal ka BP ice was less extensive than it is today (Birkenmajer and Olsson, 1998; Hormes et al., 2013). The long-term pattern of SBIS advance and retreat in western Svalbard is largely based on the Kapp Ekholm sediment section located at the inner reaches of Isfjorden,

Figure 2. Ice margin constraints at Hornsund (Norwegian Polar Institute; toposvalbard.npolar.no/; collected in 2011). Individual ¹⁰Be ages from bedrock are shown in black text with white boxes; up-fjord erratics on the Treskelen Peninsula are displayed in white text with black boxes. Only the mean *in situ* ¹⁴C and ¹⁰Be age from the Torbjørnsenfjellet (n=5) and Wurmbrandegga (n=6; one outlier removed) elevation transects are shown (Fig. 3). The minimum-limiting radiocarbon age just north of Hornsund is in green (U-2972; 12 100 ± 320 cal ka BP; Birkenmajer and Olsson, 1998; Table 4). [Colour figure can be viewed at wileyonlinelibrary.com]

which displays alternating units of glacial till and marine sediments (Fig. 1). Because Kapp Ekholm is situated only \sim 14 km from modern ice, the marine sediment units mark intervals when Svalbard glaciers were probably not much larger than today (Mangerud *et al.*, 1998; Eccleshall *et al.*, 2016).

We collected 46 samples for ¹⁰Be dating, five samples for ²⁶Al measurement and five samples for *in situ* ¹⁴C measurements along the south-western coast of Spitsbergen. Thirty-four ¹⁰Be samples are from the Hornsund region and are divided into four distinct groups (Figs 1 and 2): (i) a series of nunatak and bedrock ridges (n = 18), (ii) an elevation transect at Torbjørnsenfjellet on the north side of Hornsund (bedrock; n = 5; Fig. 3A), (iii) an elevation transect at Wurmbrandegga on the south side of Hornsund (bedrock; n = 7; Fig. 3B), and (iv) boulders perched on a bedrock ridge adjacent to, but beyond, the late Holocene ice extent at Treskelen (n = 4). We measured in situ ¹⁴C and ²⁶Al in each bedrock sample from the Torbjørnsenfjellet elevation transect. We also collected four bedrock samples from surfaces immediately outboard of the late Holocene terminal moraine (<150 m) at Scottbreen (77.54°N, 14.36°E) located ~70 km north-west of Hornsund (Fig. 1). Lastly, we collected four ridgeline bedrock samples from Fløyfjellet (77.41°N, 14.09°E) located ~60 km north-west of Hornsund and four bedrock samples from summits near Torellbreen (77.31°N, 14.09°E) located between Fløyfjellet and Hornsund (Fig. 1).

Samples were collected in 2013 and 2014 with a hammer and chisel, and a Trimble GeoXT and Tempest antenna GPS receiver with a vertical uncertainty of \pm 0.5 m was used to record sample location and elevation. A handheld clinometer was used to measure topographic shielding by the surrounding topography. ¹⁰Be samples were processed at the Buffalo Cosmogenic Laboratory (n = 29), Lamont-Doherty Earth Observatory (LDEO) Cosmogenic Nuclide Laboratory (n = 13; $n = 5^{-26}$ Al samples), and the Scottish Universities Environmental Research Centre (SUERC; n = 4) following standard extraction methods for ¹⁰Be and ²⁶Al (Schaefer et al., 2009). In situ ¹⁴C samples were processed at LDEO and measured ¹⁴C concentrations are blank-corrected using a long-term laboratory blank (Goehring et al., 2014; see Tables 2 and 3). Accelerator mass spectrometric measurements for LDEO and Buffalo samples were made at Lawrence Livermore National Laboratory - Center for Accelerator Mass Spectrometry, and the remaining samples were measured at SUERC (Table 1). Surface exposure ages were calculated using the Arctic (¹⁰Be and ²⁶Al) and western Greenland (¹⁴C) production rate calibration datasets (Young et al., 2013, 2014) and 'Lm' scaling (Lal, 1991; Stone, 2000). Ages are calculated using version 3 of the exposure age calculator found at https://hess.ess.washington.edu/, that implements an updated treatment of muon-based nuclide production (Balco et al., 2008; Balco, 2017). We do not correct

Figure 3. Elevation transects in the Hornsund region. (A) Field photograph of Torbjørnsenfjellet with sample locations. (B) Field photograph of Wurmbrandegga with sample locations. (C) Comparison of paired ¹⁰Be and *in situ* ¹⁴C ages at Torbjørnsenfjellet, and the ¹⁰Be-dated Wurmbrandegga elevation transect located ~12 km up-fjord from Torbjørnsenfjellet. [Colour figure can be viewed at wileyonlinelibrary.com]

Table 1.	Sample	informati	on and ¹⁰ E	3e and ²⁶ A	NI data.													
Sample	Sample type	Latitude (DD)	Longitude (DD)	Elevation (m asl)	Thickness (cm)	Shielding correction	Quartz (g)	⁹ Be carrier added (g)	Carrier conc. (p.p.m.)	10 Be/ 9 Be ratio $\pm 1\sigma$ $(10^{-13})^*$	$^{26}AI/^{27}AI$ ratio ± 1 σ (10 ⁻¹³)	¹⁰ Be conc. (atoms g ⁻¹)†	¹⁰ Be uncertainty (atomsg ⁻¹)	¹⁰ Be age - Lm (ka)	²⁶ Al conc. (atoms g^{-1})	²⁶ Al uncertainty (atoms g ⁻¹)	²⁶ Al age – ²⁶ Lm (ka) / ¹⁰	Al Lab. Be
Scottbreen SCO-14-12 SCO-14-13 SCO-14-14	Bedrock Bedrock Bedrock	77.5538 77.5557 77.5563	14.4423 14.4447 14.4438	142 119 104	1.0 2.0	0.9955 0.9973 0.9982	39.9946 30.4387 35.0566	0.6092 0.6082 0.6072	372.5 372.5 372.5	$\begin{array}{c} 2.4648 \pm 0.0638 \\ 1.7251 \pm 0.0325 \\ 1.8143 \pm 0.0323 \\ 1.8143 \pm 0.0343 \end{array}$		92 616 85 543 77 270	2421 1629 1488	$18.8 \pm 0.5 \\ 17.9 \pm 0.3 \\ 16.3 \pm 0.3 \\ 16.3 \pm 0.3 \\ 10.3 \pm 0.3 \\ 10.$				Buffal Buffal Buffal
SCU-14-15 Fløyfjellet FLO-14-01 FLO-14-02 FLO-14-02	Bedrock Bedrock Bedrock Bedrock	77.4124 77.4123 77.4123 77.4133	14.4436 14.0924 14.0880 14.0883	115 265 234	2.0 2.0 2.0	0.9988 0.9996 0.9988 0.9988	20.1923 15.0139 12.0044 14.9806	0.6106 0.1818 0.1816 0.1815	6.2.5 1037 1037 1037	1.0263 ± 0.0228 1.0766 ± 0.0174 0.8357 ± 0.0157 0.9870 ± 0.0227		84 618 90 104 87 311 82 634	1/38 1962 2063 2392	17.8 ± 0.4 16.2 ± 0.4 15.9 ± 0.4 15.3 ± 0.4				LDEC
FLO-14-04 Torellbreen 55-PLO-1 70-ORV-1	Bedrock Bedrock Bedrock	77.4141 77.2604 77.3097	14.0867 15.1582 14.6887	229 812 637	2.0 5.0 2.0	0.9985 0.9469 0.9774	15.2578 15.1596 13.4797	0.1818 0.6073 0.6071	1037 372.5 372.5	$\begin{array}{c} 1.0567 \pm 0.0198 \\ 1.5003 \pm 0.0420 \\ 1.6248 \pm 0.0322 \end{array}$		87 026 149 906 179 656	2053 4185 3614	16.2 ± 0.4 17.3 ± 0.5 23.0 ± 0.5				LDEC Buffal Buffal
70-ORV-2 70-ORV-3 <i>Homsund nu</i> i 70-NORD-1	Bedrock Bedrock nataks/bedr Bedrock	77.3097 77.3099 rock 77.0939	14.6887 14.6775 15.6894	637 587 751	2.0	0.9998 0.9992 0.9992	20.0332 20.0732 20.385	0.6064 0.6054 0.6065	372.5 372.5 372.5	$\begin{array}{c} 1.7188 \pm 0.0320 \\ 1.4715 \pm 0.0273 \\ 2.582 \pm 0.0367 \end{array}$		127 826 108 796 166 380	2408 2049 2734	16.0 ± 0.3 14.3 ± 0.3 18.7 ± 0.3				Buffal Buffal Buffal
55-VAR-1 55-VAR-1 55-VAR-2 66-SLY-1 65-SLY-2	Bedrock Bedrock Bedrock Bedrock	77.0839 77.0890 77.0885 77.0939	15.7062 15.7062 15.7082 15.5151 15.5152	7.51 698 656 657	2.0 5.0 2.32 1.47	0.9999 0.9967 0.0000 1.0000	20.2005 5.1862 13.4856 26.0395 19.6.358	0.6073 0.6076 0.6122 0.6106	372.5 372.5 372.5 372.5	2.2502 ± 0.0507 0.2472 ± 0.0144 1.2506 ± 0.0449 1.6440 ± 0.0290 0.333 ± 0.0177		166 360 72 048 95 058 70 586	2/34 4209 1855 1385	10.7 ± 0.3 8.7 ± 0.5 17.3 ± 0.6 11.7 ± 0.2 8.6 ± 0.2				Buffal Buffal Buffal Buffal
70-BARA-1 68-BRATT-1 66-BRATT-2 66-BRATT-2 66-GUL-1 66-GUL-1	Bedrock Bedrock Bedrock Bedrock Bedrock Bedrock	77.1086 77.0674 77.0674 77.0674 77.0522 77.0535	15.1845 15.2118 15.2114 15.2115 15.1845 15.1838	548 548 548 548	2.0 2.43 0.94 1.26 1.78	1.0000 1.0000 1.0000 1.0000 1.0000 1.0000	27.8512 35.7727 40.0399 29.0404 27.0770 40.1016	0.6112 0.6066 0.6127 0.6116 0.6104 0.6104	372.5 372.5 372.5 372.5 372.5 372.5	0.000 ± 0.001		0,700 170 651 173 339 163 393 179 608 109 342	3361 3361 3347 3007 3156 2034	9.2 ± 0.2 9.2 ± 0.2 36.5 ± 0.7 34.5 ± 0.6 24.3 ± 0.4 14.4 ± 0.3				Buffal Buffal Buffal Buffal Buffal
67-GUL-3 67-Jahn-1 68-JAHN-2 68-JAHN-2 FAN-14-01 FAN-14-03 ARD-01 ARD-01 Torbioreonfiel	Bedrock Bedrock Bedrock Bedrock Bedrock Bedrock Bedrock	77.0515 77.0440 77.0461 77.0103 77.0145 77.0097 77.0068	15.1852 15.2406 15.2449 15.7024 15.7017 15.7015 15.4910	526 600 388 397 380 61	1.47 2.0 3.0 3.0 2.89	1.0000 1.0000 1.0000 0.9970 0.9990 0.9965	23.4779 30.1245 12.4195 10.8458 15.1240 14.6232 20.3730	0.6092 0.6104 0.6068 0.1820 0.1820 0.1829	372.5 372.5 372.5 1037 1037 1037 1037	3.3705 ± 0.0541 2.6393 ± 0.0449 1.9395 ± 0.0378 0.6877 ± 0.0131 1.3551 ± 0.0272 0.4088 ± 0.0095 1.0092 ± 0.0193		215 620 131 504 231 315 78 935 112 784 34 889 62 610	3495 2262 4600 1865 2976 898 1479	$\begin{array}{c} 29.9\pm0.5\\ 17.0\pm0.3\\ 32.7\pm0.7\\ 12.6\pm0.3\\ 17.9\pm0.5\\ 5.6\pm0.1\\ 14.1\pm0.3\\ 14.1\pm0.3\end{array}$				Burfal Burfal LDEC LDEC LDEC LDEC
14TORB-1 14TORB-2 14TORB-2 14TORB-3 14TORB-4 14TORB-5 <i>Wurmbrande</i>	Bedrock Bedrock Bedrock Bedrock Bedrock	77.0265 77.0263 77.0271 77.0273 77.0273	15.2679 15.2601 15.2312 15.2343 15.2281	633 515 252 279 225	1.87 3.04 2.45 1.53 2.09	0.9773 0.9781 0.9951 0.9910 0.9936	17.5809 16.7093 31.2907 14.8254 36.0443	0.1824 0.1819 0.1828 0.1819 0.1821	1024 1024 1024 1024 1024	1.7664±0.0285 4 1.7027±0.0276 3 3.5131±0.0538 7 2.4246±0.0394 4 2.0806±0.0516 6	3881 ± 0.3316 8344 ± 0.1548 9293 ± 0.2429 1403 ± 0.1666 3974 ± 0.3634	124966 126381 140213 203065 106472	2031 2068 2153 3313 1789	16.0 ± 0.3 18.3 ± 0.3 25.8 ± 0.4 36.3 ± 0.6 20.1 ± 0.3	921 682 910 442 866 472 1 339 280 614 729	79016 46629 31816 65019 39491	17.6±1.5 7.38- 19.6±1.0 7.20- 23.7±0.9 6.18- 35.8±1.8 6.60- 17.2±1.1 5.77-	E0.64 LDEC E0.39 LDEC E0.25 LDEC E0.34 LDEC E0.38 LDEC
WBE-14-01 WBE-14-02 WBE-14-03 WBE-14-04 WBE-14-04 WBE-14-05 WBE-14-05 WBE-14-07	Bedrock Bedrock Bedrock Bedrock Bedrock Bedrock Bedrock	76.9349 76.9350 76.9377 76.9380 76.9382 76.9404 76.9414	15.7808 15.7805 15.7748 15.7748 15.7745 15.7718 15.7702 15.7680	412 406 260 248 181 133 78	2.0 2.0 2.0 2.0 2.0	1.0000 1.0000 0.9880 0.9727 0.9883 0.9883 0.9884	25.7482 25.1815 23.7882 30.3079 30.6524 15.0632 15.0632	0.6087 0.6075 0.6080 0.6063 0.6105 0.6043 0.6071	372.5 372.5 372.5 372.5 372.5 372.5 372.5 372.5	$\begin{array}{c} 0.8823 \pm 0.0360\\ 0.8342 \pm 0.0160\\ 0.8345 \pm 0.0230\\ 1.0545 \pm 0.0212\\ 1.2143 \pm 0.0212\\ 1.1370 \pm 0.0194\\ 1.3564 \pm 0.0276\\ 1.2637 \pm 0.0238\end{array}$		85 508 81 229 59 715 70 532 69 812 65 557 60 686	3646 1732 1418 1348 1316 1419 1234	$\begin{array}{c} 13.2\pm0.6\\ 12.7\pm0.3\\ 10.9\pm0.3\\ 13.2\pm0.3\\ 13.2\pm0.3\\ 13.8\pm0.3\\ 13.8\pm0.3\\ 13.7\pm0.3\\ 13.7\pm0.3\\ 13.7\pm0.3\end{array}$			Ĵ	Buffal Buffal Buffal Buffal Buffal Buffal

		0	0	0	()	
Lab.		SUERC	SUERC	SUERC	SUERC	: SUERC N, ARD GUL-3, amples),
²⁶ AI / ¹⁰ Be						asured at FLO, FA SCO-15, SLY-1 si
²⁶ Al age – Lm (ka)						C were mea oms (<i>n</i> = 2; (SCO-13, 5; -1, GUL-2;
²⁶ Al uncertainty (atoms g ⁻¹)						sed at SUERC 342 ± 539 atc 5588 atoms 24TT-3, GUL
²⁶ Al conc. (atoms g^{-1})						ples proces). oles) and 38 of 48599 ± RATT-2, BF
¹⁰ Be age Lm (ka)		13.6 ± 0.5	12.8 ± 0.5	15.4 ± 0.9	12.6 ± 0.4	AMS). Sam et al., 2007 TORB samp ing values 4 atoms (B
^{10}Be uncertainty (atoms g^{-1})		2462	2650	4247	2117	ctrometry (C (Nishiizumi 148 atoms (corrected su 29873 ± 194
¹⁰ Be conc. (atoms g ^{−1})†		64813	62423	72734	59853	tor Mass Spee 5 \times 10 ⁶ years 5 of 8259 \pm 3 les are blank 2 samples), 2
$^{26}AI/^{27}AI$ ratio $\pm 1\sigma$ (10^{-13})						for Accelera alf-life of 1.36 d using value Buffalo samp VTT-1, JAHN-
10 Be/ 9 Be ratio $\pm 1\sigma$ $(10^{-13})^*$		0.957 ± 0.0326	1.3057 ± 0.0511	0.8705 ± 0.0477	1.1076 ± 0.0349	ratory – Center ² using a ¹⁰ Be h e blank correcte 9 ±537 atoms; 289 atoms (BR/
Carrier conc. (p.p.m.)		1664	1664	1664	1664	onal Labo 85×10^{-1} amples are e of 37 99 6575 ± 24
⁹ Be carrier added (g)		0.12670	0.12660	0.12810	0.12710	rmore Nati I ratio of 2 s. LDEO se sing a value samples), 5
Quartz (g)		20.2170	28.8390	16.5260	25.5210	ince Liver reported ess blank rrected us
Shielding correction		0.9619	0.9922	0.9981	0.9979	d at Lawre STD with a ecific proc e blank cor ORV-3, N
Thickness (cm)		2.6	3.4	1.9	1.4	e measure e to 07KNS g batch-sp amples are 1, ORV-2,
Elevation (m asl)		156	156	111	110	DEO wern d relative sted using SUERC si si (ORVYa
Longitude (DD)		16.2057	16.2055	16.2162	16.2160	I o and LE re reporte ink correc or all : 1022 atom
Latitude (DD)		77.0227	77.0227	77.0160	77.0161	at at Buffa Il ratios a ns are bla centratior \$3523 ±9
Sample type		Erratic	Erratic	Erratic	Erratic	s processed oratory. Al ncentratiou ¹⁰ Be con
ample	reskelen	⁻ R-01	-R-02	-R-04	⁻ R-05	*Samples AMS Lab + ¹⁰ Be col amples); AHN-1 s

et al., 2013), standard atmosphere

rate (Young

¹⁰Be production

 333430 ± 5180 atoms (SCO-12, SCO-14, SLY-2 samples), 60.94 \pm 10.954 atoms (BARA-1, WBE-03, WBE-03, WBE-05, WBE-06, WBE-07 samples), and 37.093 ± 9868 atoms (WBE-01 and WBE-02 samples).

ages are calculated using version 3 of the calculator code found at https://hess.ess.washington.edu/ (Balco et al., 2008; Balco, 2017), the 'Arctic'

pressure 'std', a rock density of $2.65\,\mathrm{g\,cm^{-3}}$, and assumes no erosion

and ₹

nuclide concentrations for snow-cover or erosion; samples are primarily from windswept locations and many sampled surfaces displayed primary glacial features. In addition, we make no correction for isostatic rebound because the effects of uplift on nuclide production are probably offset by atmospheric compression, although these effects are difficult to quantify (Staiger et al., 2007). Individual exposure ages are presented and discussed with 1-sigma analytical uncertainties, and when comparing our results to independently dated records of ice sheet or environmental change, the production rate uncertainty is propagated through in quadrature.

Results

Four individual 10 Be ages at Scottbreen are 18.8 \pm 0.5, 17.9 ± 0.3 , 16.3 ± 0.3 and 17.8 ± 0.4 ka (all bedrock). At Fløyfjellet, four individual 10 Be ages are 16.2 ± 0.4 , 16.2 ± 0.4 , 15.9 ± 0.4 and 15.3 ± 0.4 ka (all bedrock), and at Torellbreen, four additional ¹⁰Be ages are 23.0 ± 0.5 , 17.3 ± 0.5 , 16.0 ± 0.3 and 14.3 ± 0.3 ka (all bedrock). At Hornsund, the coastal nunatak and ridgeline ¹⁰Be ages span 5.6 ± 0.1 to 36.5 ± 0.7 ka (n=18; bedrock). The Wurmbrandegga elevation transect has ¹⁰Be ages ranging between 10.9 ± 0.3 and 13.8 ± 0.3 ka (n=7; bedrock), and the Torbjørnsenfjellet elevation transect has ¹⁰Be ages ranging from 16.0 ± 0.3 to 36.3 ± 0.6 ka (n = 5; bedrock). The up-fiord ¹⁰Be ages from erratic boulders perched on bedrock range from 12.6 ± 0.4 to 15.4 ± 0.9 ka (n=4). Lastly, ²⁶Al and *in situ* ¹⁴C ages at Torbjørnsenfjellet range from 17.2 ± 1.1 to 35.8 ± 1.8 ka and 16.7 ± 2.9 to 18.5 ± 2.7 ka, respectively (Tables 1–3). Measured ²⁶Al/¹⁰Be ratios range from 7.38 ± 0.64 to 5.77 ± 0.38 .

Multiple nuclides constrain the timing of deglaciation and erosion regimes

Scottbreen, Fløyfjellet and Torellbreen

The mean of four ^{10}Be ages at Scottbreen is 17.7 ± 1.2 ka (production rate uncertainty included) and it is tempting to use this age constraint as the timing of local coastal deglaciation. However, these four samples are all from bedrock locations that are in close proximity to one another (~300 m distance and 38 m elevation) and are located immediately outside Scottbreen's historical maximum extent. Landscapes positioned near glacial maxima that spend a large proportion of a glacial cycle ice free may be affected by small, uniform amounts of isotopic inheritance that yield consistent, but slightly too old ¹⁰Be ages (Briner *et al.*, 2016). Because the Scottbreen samples are from such close proximity to each other, it is possible these ¹⁰Be bedrock ages simply constrain a local ¹⁰Be inventory that contains a small, and uniform, amount of isotopic inheritance. In addition, the age 17.7 ± 1.2 ka would indicate that Scottbreen retreated within its late Holocene maximum extent rather early following the last glacial maximum. Nonetheless, while small amounts of inheritance may be influencing our Scottbreen ¹⁰Be ages, we tentatively use 17.7 ± 1.2 ka as the timing of local deglaciation. At Fløyfjellet, all ¹⁰Be ages overlap at 1-sigma, indicating that deglaciation occurred at 15.9 ± 0.7 ka. The four ¹⁰Be ages at Torellbreen are more scattered (Table 1), but the individual ^{10}Be ages of 14.3 \pm 0.3, 16.0 \pm 0.3 and 17.3 \pm 0.5 ka (mean = 15.9 ± 1.5 ka) are consistent with the timing of deglaciation at Fløyfjellet and Scottbreen. Combined, ¹⁰Be ages indicate that deglaciation at Scottbreen, Fløyfjellet and Torellbreen occurred at 17.7 ± 1.2 , 15.9 ± 0.7 and 15.9 ± 1.5 ka, respectively (Fig. 1).

Table 1. (Continued)

detai
extraction
()
4
situ
Ц
5.
e

1401E Z. 1/1		etalls.							
Sample	Date extracted	Quartz (g)	V _{CO2} (cc STP)	V _{dilute} (cc STP)	CAMS no.	$F_{ m m}$ measured	14 C blank-corrected (atoms g^{-1})	¹⁴ C age – Lm (ka)	¹⁴ C age – LSD (ka)
14TORB-1	3/4/15	5.1234	0.2576 ± 0.0030	1.5901 ± 0.0184	170000	0.0259 ± 0.0002	$208\ 248\pm 8111$	18.5 ± 2.7	19.1 ± 2.9
14TORB-2	26/2/16	3.4877	0.4839 ± 0.0056	1.8295 ± 0.0211	173883	0.0153 ± 0.0002	$183\ 882\pm12\ 146$	17.6 ± 4.0	18.0 ± 4.3
14TORB-3	22/4/15	5.0427	0.7704 ± 0.0089	1.4295 ± 0.0165	170152	0.0214 ± 0.0002	$146\ 890\pm 7942$	17.3 ± 3.2	17.3 ± 3.2
14TORB-4	22/2/16	5.0307	0.3336 ± 0.0038	1.6875 ± 0.0194	173884	0.0186 ± 0.0001	149829 ± 8358	16.9 ± 3.1	16.9 ± 3.1
14TORB-5	5/5/15	5.1089	0.5360 ± 0.0062	0.9921 ± 0.0115	173356	0.0298 ± 0.0003	$141 \ 823 \pm 7643$	16.7 ± 2.9	16.6 ± 2.9
All samples 2	the blank corrected in	sing an LDEO I	ong-term value of 112	$55 + 36$ 83×10^3 ^{14}C	atoms $(n=23)$				

Sample weight, gas volume after carbon extraction from quartz (V_{CO}) and after addition of ¹⁴C-free dilution gas (V_{dilute}), cc STP cubic centimeters at standard temperature and pressure, measured fraction modern the ¹⁴C/¹³C ratio of the sample vs. that of a standard, both corrected to d¹³C 25% VPDB and to 1950 CE), blank-corrected ¹⁴C concentrations with analytical uncertainties. We report ¹⁴C ages using 'Lm' (Lal, 1991; Stone, 2000) and 'LSD' (Lifton et al., 2014) scaling. Ľ

The consistency between the timing of deglaciation at Scottbreen (17.7 \pm 1.2 ka), Fløyfjellet (15.9 \pm 0.7 ka) and Torellbreen (15.9 \pm 1.5 ka), which all post-date the last glacial maximum, is suggestive of ${\rm ^{10}Be}$ ages that are accurately recording the timing of deglaciation and are not influenced by inheritance. Moreover, ¹⁰Be ages at all three locations are solely from bedrock, suggesting that a warmbased SBIS was able to erode through the $\sim 2 \text{ m}$ of rock required to reset the cosmogenic clock along Spitsbergen's south-western coast. Ultimately, we cannot rule out that our ¹⁰Be measurements from Scottbreen, Fløyfjellet and Torellbreen are systematically influenced by deep subsurface nuclide accumulation during periods of prolonged surface exposure and contain a small amount of isotopic inheritance (Briner et al., 2016). However, similar ¹⁰Be ages that are influenced by systematic deep subsurface nuclide accumulation would probably require near-identical exposure histories and total erosion depths during periods of ice cover across all three sites. We prefer the more likely scenario where the consistency in ¹⁰Be ages at Scottbreen, Fløyfjellet and Torellbreen simply reflects the similar timing of deglaciation across these sites and the erosional efficiency of a warmbased SBIS (Fig. 1).

Hornsund

Constraining the timing of initial deglaciation at Hornsund is more challenging. Here, we consider ¹⁰Be ages within the context of their morphostratigraphic position. A series of ages from coastal nunataks and ridges range from 5.6 ± 0.1 to 36.5 ± 0.7 ka, show no clear trend with elevation as would be expected with glacier thinning, and adjacent samples from similar elevations often have drastically different ages (Fig. 2; black text/white boxes; Table 1). A number of coastal ages are older than 20 ka and there appears to be a mode of ¹⁰Be ages centered at \sim 30–35 ka (Fig. 2). These ages could constrain an initial pulse of ice-sheet thinning or an episode of MIS 3 deglaciation followed by non-erosive MIS 2 burial. However, three 10 Be ages of 34.5 ± 0.6 , 36.4 ± 0.7 and 36.5 ± 0.7 ka are from ~ 110 m asl, whereas slightly inland there are ¹⁰Be ages of 18.7 ± 0.3 and 17.3 ± 0.6 ka from ~ 750 and 680 m asl, respectively. It is possible that these younger ages inland were affected by post-deglaciation mass wasting events, but our ages of >30 ka that pre-date the last deglaciation rest in a region where subglacial erosion during periods of ice cover was probably not as intense as in the primary Hornsund channel (Fig. 2). The large spread in ¹⁰Be ages and a ¹⁰Be ageelevation relationship that violates simple morphostratigraphy is probably due to a combination of isotopic inheritance in low-erosion zones, combined with sampling bedrock surfaces where the original post-deglaciation surface has not been preserved. Radiocarbon ages from marine sediments in a variety of settings indicate that the ice sheet extended \sim 70 km west of Hornsund to the continental shelf edge until \sim 23 ka (Fig. 1). Moreover, a recent synthesis of Eurasian ice sheet extent suggests that ice in the Barents sector was at its maximum between \sim 23 and 20 ka, making it unlikely that the Hornsund mouth deglaciated at or before ~23-21 ka as suggested by several our ¹⁰Be ages older than 23 ka (i.e. 35 ka mode in ¹⁰Be ages; Figs 1 and 2; Hughes *et al.*, 2016).

Torbjørnsenfjellet

¹⁰Be and *in situ* ¹⁴C measurements from the Torbjørnsenfjellet elevation transect constrain the timing of initial deglaciation of the Hornsund fjord mouth. In descending elevational order: the highest elevation sample (TORB-1; 633 m asl) has a 10 Be age of 16.0 ± 0.3 ka followed by 10 Be ages of 18.3 ± 0.3

Sample	V _{CO₂} (cc STP)	V _{dilute} (cc STP)	CAMS no.	F _m measured	$^{14}C (10^3 \text{ atoms})$
Blank 11-20-14	0.01643 ± 0.00019	1.446 ± 0.017	168812	0.0048 ± 0.0001	107.03 ± 13.60
Blank 1-15-15	0.01295 ± 0.00015	1.391 ± 0.016	168813	0.0048 ± 0.0001	100.87 ± 13.18
Blank 3-10-15	0.01202 ± 0.00014	1.351 ± 0.015	169702	0.0061 ± 0.0001	153.24 ± 12.92
Blank 4-17-15	0.01346 ± 0.00016	1.424 ± 0.016	170151	0.0045 ± 0.0001	89.66 ± 13.48
Blank 9-16-15	0.01318 ± 0.00015	1.373 ± 0.016	172629	0.0063 ± 0.0001	164.18 ± 13.17
Blank 3-2-16	0.01401 ± 0.00016	1.403 ± 0.016	173886	0.0040 ± 0.0001	67.01 ± 13.22

 Table 3a.
 In situ ¹⁴C blank data.

We report all blank measurements completed since November 2014. The previous LDEO long-term blank was $118.09 \pm 39.28 \times 10^{3}$ ¹⁴C atoms and included blanks up to Septmeber 2013 (Young *et al.*, 2014). The updated LDEO long-term blank value that includes the above measurements is $112.55 \pm 36.83 \times 10^{3}$ ¹⁴C atoms (n = 23).

 Table 3b.
 LDEO CRONUS-A in situ ¹⁴C data.

Sample	Quartz (g)	$V_{\rm CO_2}$ (cc STP)	V _{dilute} (cc STP)	CAMS no.	F _m measured	$^{14}C (10^3 \text{ atoms } \text{g}^{-1})$
CRONUS-A-3-24-15 CRONUS-A-4-16-16 CRONUS-A-5-19-16	4.8795 3.6393 3.6502	$\begin{array}{c} 0.1122 \pm 0.0013 \\ 0.0553 \pm 0.0006 \\ 0.0512 \pm 0.0006 \end{array}$	$\begin{array}{c} 1.470 \pm 0.017 \\ 1.439 \pm 0.017 \\ 1.423 \pm 0.016 \end{array}$	169935 173885 174602	$\begin{array}{c} 0.0826 \pm 0.0003 \\ 0.0618 \pm 0.0004 \\ 0.0624 \pm 0.0002 \end{array}$	$735.89 \pm 12.27 706.23 \pm 14.53 696.69 \pm 13.78$

CRONUS-A measurements since October 2013. Values are consistent with a previosuly reported long-term CRONUS-A value of $655.17 \pm 30.87 \times 10^{3}$ ¹⁴C atoms g⁻¹ (Young *et al.*, 2014). We note, however, that beginning with the CRONUS-A-3-24-15 extraction, we started working with a new aliquot of the CRONUS-A quartz standard.

ka (TORB-2; 515 m), 36.3 ± 0.6 ka (TORB-4; 279 m), 25.8 ± 0.4 ka (TORB-3; 252 m) and 20.1 ± 0.3 ka (TORB-5; 225 m). The oldest ages rest in the middle of the elevation transect and the youngest age is also the highest elevation sample (Fig. 2). This ¹⁰Be age–elevation distribution reveals that ¹⁰Be ages are not accurately recording the timing of glacier thinning and deglaciation because ¹⁰Be ages do not get younger with decreasing elevation nor are they statistically indistinguishable, the latter of which would suggest rapid deglaciation of all sample sites (i.e. within dating resolution). Corresponding in situ ¹⁴C ages, however, display a much different age-elevation relationship. Paired ¹⁰Be and in situ ¹⁴C ages for TORB-1 and TORB-2, our highest elevation samples, statistically overlap at 1-sigma, indicating these samples do not contain inherited ¹⁰Be (Fig. 3; Table 1). The mid-transect samples with ¹⁰Be ages of 36.3 ± 0.6 ka (TORB-4) and 25.8 ± 0.4 ka (TORB-3) have significantly younger ^{14}C ages of 16.9 ± 3.1 and 17.3 ± 3.2 ka, indicating that they contain a ¹⁰Be inventory equating to 19.4 ± 3.2 and 8.5 ± 3.2 ka of excess ¹⁰Be that accumulated during a previous period(s) of surface exposure. The lowest elevation sample (TORB-5) has a 10 Be age of 20.1 \pm 0.3 ka and a 14 C age 16.7 \pm 2.9 ka. We note that the 1-sigma analytical uncertainties of our in situ ¹⁴C measurements range from 4 to 7%, but that these measurements equate to exposure ages with internal uncertainties that range from ~ 15 to 23%. Uncertainties range from ~ 15 to 23% because our measured concentrations intersect the ¹⁴C production-time curve where small changes in ¹⁴C concentration equate to large changes in exposure age as one approaches surface saturation (nuclide production = decay; Table 2). Regardless, our in situ ¹⁴C measurements are able to quantify inherited ¹⁰Be in three of our five transect samples and, moreover, in situ ¹⁴C ages are statistically indistinguishable and average 17.4 ± 0.7 ka (n=5; Fig. 2; Fig. 3; Table 2). When accounting for the uncertainty in the production-rate calibration dataset, our ¹⁴C measurements reveal glacier thinning across our sample sites at the Hornsund mouth at 17.4 ± 1.5 ka (7.5%; Young et al, 2014).

Whereas paired ¹⁰Be-¹⁴C measurements at Torbjørnsenfjellet constrain the amount of isotopic inheritance and timing of deglaciation to 17.4 ± 1.5 ka, paired $^{26}\text{Al}\text{-}^{10}\text{Be}$ measurements offer a long-term perspective of surface exposure and burial of the Torbjørnsenfjellet ridgeline. TORB-1 and TORB-2, which have statistically identical ¹⁰Be and *in situ* ¹⁴C ages, have ²⁶Al/¹⁰Be ratios consistent with constant exposure (Fig. 4; Table 1). Our mid-transect samples (TORB-4 and TORB-3) contain inherited ¹⁰Be and measured ²⁶Al/¹⁰Be ratios suggest some degree of prolonged burial (Fig. 4). Although the TORB-5 ¹⁰Be and in situ ¹⁴C ages overlap at 2-sigma, suggestive of continuous exposure, the corresponding $^{26}\text{Al}/^{10}\text{Be}$ ratio of 5.77 ± 0.38 is inconsistent with constant exposure. Because all the transect in situ ¹⁴C ages are statistically identical and constrain the most recent period of exposure, we use the average in situ ¹⁴C age to quantify the exposure-burial history of the Torbjørnsenfjellet samples sites before the last ~17.4 ka. Specifically, we subtract 17.4 ka worth of exposure from each paired ²⁶Al-¹⁰Be measurement suggestive of non-continuous exposure (i.e. Al/Be <6.75; TORB-3, -4, -5) to quantify pre-17.4 ka exposure and burial at each sample location (Fig. 4). At TORB-5, our approach results in subtracting more 26 Al than what was measured, but points to the presence of a small amount of excess ¹⁰Be, equating to 3.4 ± 2.9 kyr of exposure. The corrected ratios for our mid-transect samples reveal a significant amount of pre-17.4 ka surface burial equating to \sim 54–570 kyr, albeit with large uncertainties (Fig. 4).

Wurmbrandegga and Treskelen

At the Wurmbrandegga elevation transect, which is located $\sim 12 \text{ km}$ up-fjord from Torbjørnsenfjellet and therefore must have deglaciated at or after 17.4 ± 1.5 ka, six of seven ¹⁰Be ages are indistinguishable and indicate that this portion of Hornsund deglaciated at 13.3 ± 0.6 ka (Figs 2 and 3). Unlike the Torbjørnsenfjellet transect, we find no evidence that the samples at Wurmbrandegga contain inherited ¹⁰Be, which is

suggestive of a greater total erosion depth than the Torbjørnsenfjellet site during periods of ice cover. Finally, our easternmost ¹⁰Be ages from perched boulders positioned ~13 km up-fjord from Wurmbrandegga at Treskelen indicate that final deglaciation of the fjord occurred by 13.0 ± 0.7 ka (n=3) after removal of an older outlier $(15.4 \pm 0.9;$ Fig. 2). Combined, our ¹⁰Be and *in situ* ¹⁴C ages suggest that the Hornsund mouth deglaciated at 17.4 ± 1.5 ka, with ice remaining near the fjord mouth for several thousand years before complete deglaciation between 13.3 ± 0.6 and 13.0 ± 0.7 ka (Figs 2 and 5). Alternatively, our ice-margin chronology allows for initial deglaciation of the Hornsund mouth at 17.4 ± 1.5 ka followed by continued fjord deglaciation, an ice-margin re-advance beyond the Wurmbrandegga transect, followed by inner fjord deglaciation between 13.3 ± 0.6 and 13.0 ± 0.7 ka. However, we are unaware of any sediment packages within the fjord that are suggestive of a significant re-advance of the Hornsund glacier.

The Hornsund outlet glacier during the last glacial cycle

¹⁰Be and in situ ¹⁴C ages versus traditional radiocarbon constraints

In situ ¹⁴C ages indicate that the Hornsund outlet glacier thinned \sim 400 m at 17.4 \pm 1.5 ka, consistent with the timing of coastal deglaciation at Scottbreen (17.7 \pm 1.2 ka), Fløyfjellet $(15.7 \pm 0.7 \text{ ka})$ and Torellbreen $(15.9 \pm 1.6 \text{ ka}; \text{Fig. 1})$. However, previously published records suggest that deglaciation of the western Svalbard coast occurred much later. A series of radiocarbon ages from marine sediments place the SBIS margin out on the shelf edge between \sim 23 and 20 ka with deglaciation of the SW Spitsbergen coast constrained to ~13.7–11.7 cal ka BP based on minimum-limiting radiocarbon ages from raised marine sediments (Figs 1 and 2; Landvik et al., 1998; Hormes et al., 2013). It is possible that all of our deglaciation ages constrain initial ice-sheet thinning and unroofing of our sampling sites before deglaciation of the coastal lowlands. However, with the exception of the Torellbreen site located north of Hornsund, all of our

deglaciation ages span relatively low elevations that should capture the timing of coastal deglaciation (Table 1). Alternatively, there is a possible \sim 5 kyr offset in the timing of Hornsund deglaciation as defined by our in situ ¹⁴C ages versus the minimum-limiting radiocarbon of 12.1 cal ka BP. And, the deglaciation age provided by the Wurmbrandegga elevation transect located only ~12 km up-fjord from the outer coast is 13.3 ± 0.6 ka; ~4 kyr younger than the Hornsund mouth in situ ¹⁴C age, but still older than the minimumlimiting 12.1 cal ka BP deglaciation age. One explanation is that the minimum-limiting 12.1 cal ka BP age does not closely constrain the timing of deglaciation and that deglaciation occurred at either 17.4 ± 1.5 ka or just before 13.3 ± 0.6 ka. Or, the Hornsund outlet glacier thinned to at least 225 m asl at 17.4 ± 1.5 ka (lowest sample in elevation transect) but occupied the fjord mouth for another several thousand years before final deglaciation. A final possibility is that our in situ ¹⁴C measurements contain inherited in situ ¹⁴C from a previous period of exposure that occurred before 13.3 ± 0.6 ka or 12.1 cal ka BP.

Modeling ¹⁰Be and in situ ¹⁴C inventories

To assess our measured ¹⁰Be and *in situ* ¹⁴C inventories at Torbjørnsenfjellet, we use the Svalbard glaciation curve over the last glacial cycle to model the possible ¹⁰Be and in situ ¹⁴C accumulation history at our sample sites. The Svalbard glaciation curve (Fig. 5) suggests a dynamic SBIS advanced onto the continental shelf several times over the last glacial cycle; between these glacial maxima, the SBIS retreated back to an ice configuration similar to today (Mangerud et al., 1998; Eccleshall et al., 2016; Figs 1 and 5). Notably, the SBIS occupied the shelf or shelf edge during MIS 6, MIS 5d, MIS 5b and MIS 2, with an additional, although probably not as extensive, advance during MIS 4. Although this Svalbard glaciation history is largely based on the Kapp Ekholm section at the head of Isfjorden (Fig. 1), a non-finite radiocarbon age of >40 ka from shell fragments suggests that Hornsund may have deglaciated at least once before the most recent episode of deglaciation (Landvik et al., 1998).

8

7

Torbjørnsenfjellet
measured

¹⁴C - corrected

This template of SBIS advance and retreat provides a unique opportunity to assess the likelihood of our coastal Torbjørnsenfjellet bedrock sites yielding significant inherited ¹⁰Be coupled with in situ ¹⁴C inventories that have minimal or no inheritance. We assume no prior nuclide inventory at our bedrock sites at the termination of MIS 6 (Fig. 5). Next, we allow surface exposure and nuclide accumulation during MIS 5e, 5c, 5a and 3, burial and nuclide decay during MIS 5d, 5b, 4 and 2, and assume a 'true' deglaciation of \sim 13.3 ka as defined by our nearby Wurmbrandegga ¹⁰Be ages. We want to assess the maximum amount of potential inherited nuclides at Torbjørnsenfjellet so we assume no bedrock erosion during periods of ice cover; only nuclide decay via ¹⁰Be burial decreases the nuclide inventory. When modeling and in situ ¹⁴C concentrations using these assumptions, our Torbjørnsenfjellet bedrock sites would have ¹⁰Be and in situ 14 C concentrations equating to exposure ages of ~81 and 14.6 ka, respectively (Fig. 5).

Our model suggests that using the Svalbard glaciation curve as a template for surface exposure and burial results in ¹⁰Be and *in situ* ¹⁴C concentrations similar to what we measured – old ¹⁰Be ages coupled with younger *in situ* ¹⁴C ages. In addition, our approach results in a small amount of inherited *in situ* ¹⁴C at our Torbjørnsenfjellet sample sites. Rather, the modeled duration of MIS 2 burial is not long enough to completely remove the accumulated MIS 5e to MIS 3 inventory of in situ¹⁴C (Fig. 5). Because the duration of MIS 2 burial results in a small amount of inherited in situ ¹⁴C in our model experiment, we next assume that our measured in situ ¹⁴C concentrations are influenced by inheritance and then calculate the timing of deglaciation needed to result in our measured in situ ¹⁴C concentrations. With this approach, our measured in situ ¹⁴C concentrations are achieved if deglaciation occurs at ~15.6 ka, which is suggestive of a 'true' deglaciation age that is ~ 2 ka younger than our measured in situ ¹⁴C ages. However, our model set up is tuned to allow for the maximum amount of inherited in situ ¹⁴C because we assume no glacial erosion during periods of ice cover, which is not supported by our measured ¹⁰Be ages, which vary across the transect and imply varying degrees of glacial erosion. The modeled exposure-burial histories result in ¹⁰Be concentrations that equate to \sim 81–85 ka, whereas our measured ¹⁰Be ages from the Torbjørnsenfjellet transect range from ~16 to \sim 36 ka (Fig. 3C). This disparity between the modeled and measured ¹⁰Be ages suggests that the Torbjørnsenfjellet sample sites either experienced some degree of glacial erosion that stripped away¹⁰Be (and in situ¹⁴C) from the bedrock sites and/or our sample sites experienced less surface exposure during the last glacial cycle than what we modeled using the Svalbard glaciation curve.

Figure 5. (A) Svalbard glaciation curve (Mangerud *et al.*, 1998; Eccleshall *et al.*, 2016). The timing of glacier advance has been tuned to coincide with the Marine Isotope Stage (MIS) that each advance is thought to correlate to as discussed in Eccleshall *et al.* (2016). MIS definitions are from Lisiecki and Raymo (2005). PIs-D: Phantomodden insterstadial D; G-E: Glaciation E; KEIs-F: Kapp Ekholm interstadial F; Ig-H: interglaciation H. Shown are the modeled proof-of-concept ¹⁰Be and *in situ* ¹⁴C concentrations at 252 m asl (TORB-3) assuming that our Torbjørnsenfjellet sample sites become exposed and buried following the Svalbard glaciation curve and assuming a 'true' deglaciation age of 13.3 ka. The resulting *in situ* ¹⁴C concentration equates to an exposure age of ~14.6 ka. (B) Retreat chronologies for the Hornsund and Isfjorden sectors of the SBIS compared to the NGRIP δ^{18} O record (North Greenland Ice Core Project members, 2004) and a record of ice-rafted detritus and δ^{18} O (*N. pachyderma s.*) from core JM03-373PC2 located south-west of Hornsund (Rasmussen *et al.*, 2007; Jessen *et al.*, 2010; see location No. 2 on Fig. 1). Numbers between data points are the calculated net (minimum) ice-margin retreat rates using the age constraint midpoint. Symbols are larger than the exception of the *in situ* ¹⁴C-based Torbjørnsenfjellet data point at 17.4 ± 1.5 ka. The JM03-373PC2 age model has been recalibrated using Calib 7.1 and a reservoir correction of 440 years (Stuiver *et al.*, 2018; see Rasmussen *et al.*, 2007 and Jessen *et al.*, 2010 for details). [Colour figure can be viewed at wileyonlinelibrary.com]

Table 4. Summary of deglacial radiocarb	on ages.
---	----------

Location (Fig. 1)	Latitude	Longitude	¹⁴ C years	1-sigma uncertainty	cal a BP	Setting (Site; Lab ID; material; description)	Reference
1	76	16	16750	110	19610 ± 170	JM02-460PC; AAR-8764; N. pachyderma;	Rasmussen et al. (2007)
2	76.4	13.1	19310	140	22660 ± 170	JM03-373PC2; AAR-8773; <i>N. pachyderma</i> ; hemipelagic deposits above debris flow	Rasmussen et al. (2007)
3	76.333	12.600	19630	150	23040 ± 230	JM03-374PC; AAR-8766; <i>N. pachyderma</i> ; heminelagic deposits above debris flow	Jessen <i>et al</i> . (2010)
4	77.220	12.625	16 880	80	19750 ± 170	NP90-46; Beta-71988; <i>E. excavatum</i> ; marine	Cadman (1996)
5	77.617	9.936	16035	130	18780 ± 135	NP90-36; Tua-845; <i>N. pachyderma</i> ; above till,	Elverhøi <i>et al</i> . (1995)
6	77.817	9.093	19815	120	23240 ± 190	NP90-39; Tua-557; <i>N. pachyderma</i> ; above till,	Elverhøi <i>et al.</i> (1995)
7* 8*	78.7588 79.2388	10.7463 11.8139	NA NA	NA NA	$\begin{array}{c} 20 \ 290 \pm 2120 \\ 25 \ 010 \pm 1010 \end{array}$	JL00-31 Leefjellet; ¹⁰ Be exposure age Langskipet; ¹⁰ Be exposure age; 611 m a.s.l.	Landvik <i>et al.</i> (2013) Gjermundsen <i>et al.</i> (2013)
9*	79.4640	11.3937	NA	NA	21840 ± 950	Kaf-1; ¹⁰ Be exposure age; 836 m a.s.l.	Gjermundsen <i>et al.</i> (2013)
10*	79.6013	11.7866	NA	NA	19340 ± 1260	Average of Ovo-3 & Ovo-4; ¹⁰ Be exposure ages: 687 m and 730 m a.s.l.	Gjermundsen <i>et al.</i> (2013)
11*	79.7216	10.9483	NA	NA	17860 ± 2040	Average of 99-01 & 99-05 Danskøya; ¹⁰ Be exposure ages; 77 m and 74 m a.s.l.	Landvik <i>et al.</i> (2003); Gjermundsen <i>et al.</i> (2013)
12*	79.7375	13.6142	NA	NA	21670 ± 1310	R4; ¹⁰ Be exposure age; 85 m a.s.l.	Gjermundsen <i>et al.</i> (2013)
13*	80.2088	22.4817	NA	NA	26730 ± 3910	Bluffen-2; 10 Be exposure age; 165 m a.s.l.	Hormes <i>et al.</i> (2011)
14* 15	80.2073	22.5102 25.095	NA 18640	NA 100	$282/0 \pm 2140$ 21990 ± 170	Blutten-3; ¹ °Be exposure age; 123 m a.s.l.	Hormes <i>et al.</i> (2011) Hogan <i>et al.</i> (2010)
16	76.7	16.4	10 660	220	11730 ± 400	Werenskioldbreen; U-2831; <i>Mya truncata</i> (reworked); glacier margin near medial	Birkenmajer and Olsson (1998)
17	77.08	15.18	10790	160	12100 ± 320	Werenskioldbreen; U-2972; <i>Mya truncata</i> (reworked): esker in glacier forefield	Birkenmajer and Olsson (1998)
18	77.55	14.03	12 350	145	13690 ± 170	Wedel Jarlsberg/Dyrstadalen; Ua-1081; shell fragment: beach gravels at 50.5 m a s.l.	Salvigsen and Elgersma
19	78.188	9.943	15 255	180	17930 ± 230	NP90-21; Tua-359; <i>N. pachyderma</i> ; marine sediment above diamicton	Elverhøi <i>et al.</i> (1995)
20	78.022	11.857	12835	100	14360 ± 250	NP-90-25; Tua-553; unidentified mollusc;	Svendsen <i>et al.</i> (1996)
21	78.047	12.988	12 985	145	14630 ± 330	88-02; Tua-42; <i>Nucula tenuis</i> ; mud with dropstones on firm diamicton	Svendsen <i>et al</i> . (1992)
22	78.071	13.759	12740	190	14260 ± 360	Linnevatnet; Ua-732, shells; marine sediment above diamicton	Mangerud and Svendsen (1990)
23	78.293	14.803	10975	60	12390 ± 150	JM98-818-PC; Tua-5191; Foraminifera; glacimarine sediments on glaciomarine diamicton	Forwick and Vorren (2007)
24	78.277	15.260	10835	140	12180 ± 180	NP87-144; Ua-757; mollusc unidentified	Elverhøi <i>et al</i> . (1995)
25	78.380	15.479	11 025	90	12430 ± 150	90-03 PC; Tua-442; Foraminifera; laminated glacimarine mud on top of till	Elverhøi <i>et al.</i> (1995)
26	78.565	16.428	10085	115	10980 ± 160	NP90-01-PC; Tua-186; Bryzoyoa; marine mud on top of laminated deglaciated mud	Svendsen <i>et al</i> . (1996)
27	78.552	16.540	10 240	60	11130 ± 80	Kapp Ekholm V-H8; Ua-35635; Hiatella arctica; marine sands on LGM melt-out/ subglacial till	Hormes <i>et al.</i> (2013)
28*	78.8400	10.6023	NA	NA	16470 ± 1900	JL-00-10; ¹⁰ Be exposure age; 325 m a.s.l.	Landvik <i>et al.</i> (2003)
29	79.022	11.104	13 960	120	16180 ± 190	NP90-9-PC3; WHG-941; mixed benthic forams; laminated marine mud over glacial till	Landvik <i>et al.</i> (2013)
30*	79.1914	12.0009	NA	NA	16930 ± 1120	Flakstor; ¹⁰ Be exposure age; 217 m a.s.l.	Gjermundsen <i>et al.</i> (2013)
31*	79.7447	13.0695	NA	NA	15570 ± 790	R10; ¹⁰ Be exposure age; 84 m a.s.l.	Gjermundsen <i>et al.</i> (2013)
32*	80.0367	18.7056	NA	NA	16810 ± 1220	Flora-2; ¹⁰ Be exposure age; 220 m a.s.l.	Hormes et al. (2011)
33	80.355	16.299	14165	135	16470 ± 230	NP94-51SC2; mixed benthic foraminifera; outer shelf	Koç <i>et al.</i> (2002)

All radiocarbon ages were calibrated with Calib 7.1 and the Marine13 database (Stuiver *et al.*, 2018), and use a ΔR value of 107 ± 52 years (Mangerud *et al.*, 2006; Hormes *et al.*, 2013). Calibrated ages and their uncertainties have been rounded to the nearest decade. Note that locations marked with an asterisk report ¹⁰Be ages and are reported as years of exposure, not years BP, and have been re-calcualted using v3 of the exposure age calculator found at https:// hess.ess.washington.edu/ (see main text).

The minor differences in our measured versus modeled ¹⁰Be and *in situ* ¹⁴C inventories is probably due to variable glacial erosion during periods of ice cover and/or uncertainty in the exact duration that our bedrock sites experienced ice cover and nuclide decay versus the exact duration of ice-free conditions and nuclide accumulation. Despite these differences, our model captures the overall pattern of older ¹⁰Be ages influenced by isotopic inheritance coupled with in situ ¹⁴C ages that are much younger. The maximum inheritance scenario that does not account for glacial erosion results in in situ ¹⁴C concentrations with only a small degree of inheritance (~ 2 ka). Glacial erosion during periods of ice cover, as suggested by the spread in ¹⁰Be ages, would not only remove a portion of previously accumulated ¹⁰Be, but also remove in situ ¹⁴C resulting in bedrock sample sites that do not contain previously accumulated ¹⁴C before the most recent period of exposure. Thus, it is unlikely that our in situ ¹⁴C ages are influenced by inheritance and that the 'true' age of deglaciation at the fjord mouth is 17.4 ± 1.5 ka (Fig. 2).

Coastal deglaciation of western Spitsbergen

Our ¹⁰Be and *in situ* ¹⁴C ages indicate that the region of coastal south-western Spitsbergen south of Isfjorden deglaciated between \sim 18 and 16 ka (Fig. 1). This timing of coastal deglaciation in south-western Spitsbergen is broadly consistent with the timing of coastal deglaciation in north-western Spitsbergen, which is constrained to ~17.9-15.6 cal ka BP based on the oldest published coastal radiocarbon ages, and low-elevation ¹⁰Be ages from the region (Fig. 1; Table 4). Although several older ¹⁰Be ages from north-western Spitsbergen range from \sim 25.0 to 19.3 ka (Fig. 1), these ages are mainly from high-elevation nunataks and probably record initial ice sheet thinning rather than coastal deglaciation. Two older 10 Be ages of 26.7 \pm 3.9 and 28.3 \pm 2.1 ka from erratics in Nordaustlandet may record the timing of early coastal deglaciation considering their low elevations (165 and 123 m asl), but their anomalously old ages could simply represent the presence of cold-based ice and ¹⁰Be inheritance as suggested by the original authors (Hormes et al., 2011; Fig. 1; Table 1). It appears that the timing of coastal deglaciation in north-western and south-western Spitsbergen (between Hornsund and Scottbreen) is perhaps similar, but deglaciation through the Isfjorden trough occurred much later (Figs 1 and 5). A relatively dense transect of radiocarbon ages extending from the outer shelf to near the modern ice margin in Isfjorden indicates that although the timing of initial retreat from the shelf edge is similar to the timing of initial icemargin retreat west of Hornsund (~23 ka), ice at Isfjorden remained near the shelf edge until as late as ~17.9 cal ka BP (Fig. 1). In addition, the Isfjorden mouth did not deglaciate until ~14.3 cal ka BP, 1.5-3.5 kyr later than the timing of coastal deglaciation in south-western Spitsbergen (Fig. 1). A record of ice-rafted detritus (IRD) located immediately southwest of Hornsund reveals peaks in IRD at \sim 18.7 and \sim 16.3 ka, suggestive of increased calving and ice-margin retreat at these times (Fig. 5; Rasmussen et al., 2007; Jessen et al., 2010). This increase in IRD deposition is broadly correlative with the timing of coastal deglaciation as constrained by our ¹⁰Be and *in situ* ¹⁴C measurements (~18–16 ka); however, the resolution of our record, and in particular *in situ* ¹⁴Cbased age of deglaciation $(17.4 \pm 1.5 \text{ ka})$, prevents us from linking the timing of deglaciation to any one IRD peak (Fig. 5).

The timing of coastal deglaciation appears to have differed between Isfjorden and south-western Spitsbergen, but the relatively sparse number of radiocarbon constraints between the outer shelf and coast at Hornsund prevents us from determining if ice in this sector stayed near the shelf edge for several thousand years or gradually retreated between ~ 23 and 17.4 ± 1.5 ka (Figs 1 and 5). Existing age constraints from Isfjorden and Hornsund allow us to place millennial- to centennial-scale retreat of the ice margin into a long-term context (Fig. 5). At Hornsund, the SBIS retreated at a millennially averaged rate of $\sim 10 \text{ m a}^{-1}$ between ~ 23 and 17.4 ka, and \sim 3 m a⁻¹ between 17.4 and 13.3 ka. However, the 17.4 ± 1.5 ka constraint along the Hornsund transect at Torbjørnsenfjellet requires ~400 m of ice-sheet thinning in addition to constraining the lateral retreat of the ice margin. Following deglaciation at Wurmbrandegga, the ice margin retreated between ${\sim}13.3$ and 13.0 ka at a rate of ${\sim}43\,\text{m}\text{ a}^-$ (Fig. 5). At Isfjorden, initial ice-margin retreat occurred at \sim 3 m a⁻¹ between 23.2 cal ka BP and 17.9 cal ka BP followed by a slightly faster rate of retreat of $\sim 13 \,\mathrm{m}$ a $^{-1}$ between ~17.9 and 14.5 cal ka BP. Afterwards, retreat rates increased significantly between ~14.5 and 14.3 cal ka BP $(\sim 400 \text{ m a}^{-1})$, with another pulse of rapid deglaciation centered on ~12.3 cal ka BP (~120 m a⁻¹; Fig. 5). We note that these retreat rates should be considered minimum or net retreat rates because our methods are limited in their ability to identify pulses of fast ice retreat and almost certainly smooth over episodes of faster ice retreat.

It appears that initial retreat of the western margin of the SBIS occurred as early as ~23 ka, synchronous with the initial rise in boreal summer insolation at ~24–23 ka and consistent with the onset of initial retreat of the southern margin of the Laurentide Ice Sheet (e.g. Ullman *et al.*, 2015), but pre-dating any significant rise in eustatic sea level. However, SBIS retreat rates remained relatively slow until at least 17.9 ka and perhaps as late as ~14.5 ka as suggested by the Isfjorden recession chronology. Indeed, whereas initial retreat was contemporaneous with rising summer insolation, elevated retreat rates were not achieved until several millennia later, contemporaneous with rising temperatures as recorded in Greenland ice cores at the onset of the Bølling–Allerød (Fig. 5).

Conclusions

Deglaciation of the south-western Spitsbergen coast probably occurred between \sim 18 and 16 ka based on new ¹⁰Be and *in* situ ¹⁴C measurements from four separate sites along \sim 60 km of south-western Spitsbergen. ¹⁰Be measurements in bedrock along a \sim 400-m elevation transect display varying amounts of isotopic inheritance and are unable to constrain the timing of deglaciation or ice-sheet thinning, but complimentary in situ¹⁴C measurements are statistically identical and mark an episode of ice-sheet thinning at 17.4 ± 1.5 ka. Following coastal deglaciation, the middle of Hornsund deglaciated by 13.3 ± 0.6 ka with complete fjord deglaciation by 13.0 ± 0.7 ka. Our dataset indicates that the timing of coastal deglaciation in south-western Spitsbergen was significantly earlier than previous estimates based on a limited number of minimum-constraining radiocarbon ages. Previously published age constraints, coupled with our new ¹⁰Be and *in situ* ¹⁴C ages, suggest that the western coast of Spitsbergen between Hornsund and Scottbreen deglaciated between ~18 and 16 ka, and that deglaciation of Isfjorden occurred much later with the fjord mouth deglaciating at ~14.3 ka. Initial retreat of the western SBIS margin appears to have occurred at \sim 23 ka followed by relatively variable and asynchronous retreat between the Isfjorden and Hornsund sectors of the SBIS, thus highlighting the dynamic nature in which ice sheets recede. Lastly, in situ ¹⁴C measurements offer the

ability to rectify ambiguous ¹⁰Be-based datasets influenced by isotopic inheritance in order to extract key chronological information.

Acknowledgements. We are grateful for logistical support from the Polish Polar Station at Hornsund and two Arctic field grants to Endre Gjermundsen from the Svalbard Science Forum by the Norwegian Research Council. A portion of this work was performed under the auspices of the U.S. Department of Energy by the Lawrence Livermore National Laboratory under contracts DE-AC52-07NA27344. Fieldwork would not have been possible without the help of Ellinor Falkgjerdet, Lina Gislefoss, Carl Petter Nielsen and Bjørn Andrè Skjæret. We thank one anonymous reviewer for several suggestions that helped improve the manuscript. This is LDEO contribution #8225 and LLNL-JRNL-743296.

Abbreviations. IRD, ice-rafted detritus; LDEO, Lamont-Doherty Earth Observatory; MIS, Marine Isotope Stage; SBIS, Svalbard–Barents Ice Sheet; SUERC, Scottish Universities Environmental Research Centre.

References

- North Greenland Ice Core Project members. 2004. High-resolution record of Northern Hemisphere climate extending into the last interglacial period. *Nature* **431**: 147–151.
- Balco G. 2011. Contributions and unrealized potential contributions of cosmogenic-nuclide exposure dating to glacier chronology, 1990–2010. *Quaternary Science Reviews* **30**: 3–27.
- Balco G. 2017. Production rate calculations for cosmic-ray-muonproduced ¹⁰Be and ²⁶Al benchmarked against geological calibration data. *Quaternary Geochronology* **39**: 150–173.
- Balco G, Stone JO, Lifton NA *et al.* 2008. A complete and easily accessible means of calculating surface exposure ages or erosion rates from ¹⁰Be and ²⁶Al measurements. *Quaternary Geochronology* **3**: 174–195.
- Balco G, Stone JOH, Sliwinski MG *et al.* 2014. Features of the glacial history of the Transantarctic Mountains inferred from cosmogenic ²⁶Al, ¹⁰Be and ²¹Ne concentrations in bedrock surfaces. *Antarctic Science* **26**: 708–723.
- Balco G, Todd C, Huybers K *et al.* 2016. Cosmogenic-nuclide exposure ages from the Pensacola Mountains adjacent to the Foundation ice stream, Antarctica. *American Journal of Science* **316**: 542–577.
- Birkenmajer K, Olsson IU. 1998. Radiocarbon-dated late Pleistocene and Early Holocene marine shells at Werenskioldbreen, south Spitsbergen. *Bulletin of the Polish Academy of Sciences, Earth Sciences* **46**: 21–34.
- Błaszczyk M, Jania JA, Kolondra L. 2013. Fluctuations of tidewater glaciers in Hornsund Fjord (southern Svalbard) since the beginning of the 20th century. *Polish Polar Research* **34**: 327–352.
- Briner JP, Goehring BM, Mangerud J *et al.* 2016. The deep accumulation of ¹⁰Be at Utsira, southwestern Norway: implications for cosmogenic nuclide exposure dating in peripheral ice sheet landscapes. *Geophysical Research Letters* **43**: 9121–9129.
- Briner JP, Lifton NA, Miller GH *et al.* 2014. Using *in situ* cosmogenic ¹⁰Be, ¹⁴C, and ²⁶Al to decipher the history of polythermal ice sheets on Baffin Island, Arctic Canada. *Quaternary Geochronology* **19**: 4–13.
- Cadman V. 1996. *Glacimarine sedimentation and environments during the Late Weichselian and Holocene in the Bellsund trough and Van Keulenfjorden*. Thesis, University of Cambridge.
- Chmeleff J, von Blanckenburg F, Kossert K *et al.* 2010. Determination of the ¹⁰Be half-life by multicollector icp-ms and liquid scintillation counting. *Nuclear Instruments and Methods in Physics Research Section B: Beam Interactions with Materials and Atoms* **268**: 192–199.
- Eccleshall SV, Hormes A, Hovland A *et al.* 2016. Constraining the chronology of Pleistocene glaciations on Svalbard: Kapp Ekholm re-visited. *Boreas* **45**: 790–803.
- Elverhøi A, Andersen ES, Dokken T *et al.* 1995. The growth and decay of the Late Weichselian ice sheet in western Svalbard and adjacent areas based on provenance studies of marine sediments. *Quaternary Research* **44**: 303–316.

- Forwick M, Vorren TO. 2007. Holocene mass-transport activity and climate in outer lsfjorden, Spitsbergen: marine and subsurface evidence. *The Holocene* **17**: 707–716.
- Gjermundsen EF, Briner JP, Akçar N *et al.* 2013. Late Weichselian local ice dome configuration and chronology in Northwestern Svalbard: early thinning, late retreat. *Quaternary Science Reviews* **72**: 112–127.
- Gjermundsen EF, Briner JP, Akçar N *et al.* 2015. Minimal erosion of Arctic alpine topography during late Quaternary glaciation. *Nature Geoscience* **8**: 789–792.
- Goehring BM, Schaefer JM, Schluechter C *et al.* 2011. The Rhone Glacier was smaller than today for most of the Holocene. *Geology* **39**: 679–682.
- Goehring BM, Schimmelpfennig I, Schaefer JM. 2014. Capabilities of the Lamont–Doherty Earth Observatory *in situ* ¹⁴C extraction laboratory updated. *Quaternary Geochronology* **19**: 194–197.
- Granger DE, Lifton NA, Willenbring JK. 2013. A cosmic trip: 25 years of cosmogenic nuclides in geology. *Geological Society of America Bulletin* **125**: 1379–1402.
- Håkansson L, Alexanderson H, Hjort C *et al.* 2008. Late Pleistocene glacial history of Jameson Land, central East Greenland, derived from cosmogenic ¹⁰Be and ²⁶Al exposure dating. *Boreas* **38**: 244–260.
- Hogan KA, Dowdeswell JA, Noormets R *et al.* 2010. Evidence for full-glacial flow and retreat of the Late Weichselian Ice Sheet from the waters around Kong Karls Land, eastern Svalbard. *Quaternary Science Reviews* **29**: 3563–3582.
- Hormes A, Akçar N, Kubik PW. 2011. Cosmogenic radionuclide dating indicates ice-sheet configuration during MIS 2 on Nordaus-tlandet, Svalbard. *Boreas* **40**: 636–649.
- Hormes A, Gjermundsen EF, Rasmussen TL. 2013. From mountain top to the deep sea deglaciation in 4D of the northwestern Barents Sea ice sheet. *Quaternary Science Reviews* **75**: 78–99.
- Hughes ALC, Gyllencreutz R, Lohne ØS *et al.* 2016. The last Eurasian ice sheets a chronological database and time-slice reconstruction, DATED-1. *Boreas* **45**: 1–45.
- Ingólfsson Ó, Landvik JY. 2013. The Svalbard–Barents Sea ice-sheet – Historical, current and future perspectives. *Quaternary Science Reviews* 64: 33–60.
- Ivy-Ochs S, Briner JP. 2014. Dating disappearing ice with cosmogenic nuclides. *Elements* 10: 351–356.
- Jakobsson M, Mayer LA, Coakley B *et al.* 2012. The International Bathymetric Chart of the Arctic Ocean (IBCAO) version 3.0. *Geophysical Research Letters*. DOI: 10.1029/2012GL052219.
- Jessen SP, Rasmussen TL, Nielsen T *et al.* 2010. A new Late Weichselian and Holocene marine chronology for the western Svalbard slope 30,000–0 cal years BP. *Quaternary Science Reviews* **29**: 1301–1312.
- Johnson JS, Smith JA, Schaefer JM *et al.* 2017. The last glaciation of Bear Peninsula, central Amundsen Sea Embayment of Antarctica: constraints on timing and duration revealed by *in situ* cosmogenic ¹⁴C and ¹⁰Be dating. *Quaternary Science Reviews* **178**: 77–88.
- Koç N, Klitgaard-Kristensen D, Hasle K *et al.* 2002. Late glacial palaeoceanography of Hinlopen Strait, northern Svalbard. *Polar Research* **21**: 307–314.
- Lal D. 1991. Cosmic ray labeling of erosion surfaces: *in situ* nuclide production rates and erosion models. *Earth and Planetary Science Letters* **104**: 424–439.
- Landvik JY, Alexanderson H, Henriksen M *et al.* 2014. Landscape imprints of changing glacial regimes during ice-sheet build-up and decay: a conceptual model from Svalbard. *Quaternary Science Reviews* **92**: 258–268.
- Landvik JY, Bondevik S, Elverhøi A *et al.* 1998. The last glacial maximum of Svalabrd and the Barents Sea area: ice sheet extent and configuration. *Quaternary Science Reviews* **17**: 43–75.
- Landvik JY, Brook EJ, Gualtieri L *et al.* 2003. Northwest Svalbard during the last glaciation: ice-free areas existed. *Geology* **31**: 905–908.
- Landvik JY, Brook EJ, Gualtieri L *et al.* 2013. ¹⁰Be exposure age constraints on the Late Weichselian ice-sheet geometry and dynamics in inter-ice-stream areas, western Svalbard. *Boreas* **42**: 43–56.
- Lifton NA, Jull AJT, Quade J. 2001. A new extraction technique and production rate estimate for *in situ* cosmogenic ¹⁴C in quartz. *Geochimica et Cosmochimica Acta* **65**: 1953–1969.

- Lifton NA, Sato T, Dunai TJ. 2014. Scaling in situ cosmogenic nuclide production rates using analytical approximations to atmospheric cosmic-ray fluxes. *Earth and Planetary Science Letters* **386**: 149–160.
- Lisiecki LE, Raymo ME. 2005. A Pliocene–Pleistocene stack of 57 globally distributed benthic δ^{18} O records. *Paleoceanography* **20**. DOI: 10.1029/2004PA001071.
- Mangerud J, Bondevik S, Gulliksen S *et al.* 2006. Marine ¹⁴C reservoir ages for 19th century whales and molluscs from the North Atlantic. *Quaternary Science Reviews* **25**: 3228–3245.
- Mangerud J, Dokken TM, Hebbeln D *et al.* 1998. Fluctuations of the Svalbard–Barents Sea ice sheet during the last 150,000 years. *Quaternary Science Reviews* **17**: 11–42.
- Mangerud J, Svendsen JI. 1990. Deglaciation chronology inferred from marine sediments in a proglacial lake basin, western Spitsbergen. *Boreas* **19**: 249–272.
- Nishiizumi K, Imamura M, Caffee MW et al. 2007. Absolute calibration of ¹⁰Be AMS standards. *Nuclear Instruments and Methods in Physics Research Section B: Beam Interactions with Materials and Atoms* **258**: 403–413.
- Patton H, Hubbard A, Andreassen K *et al.* 2016. The build-up, configuration, and dynamical sensitivity of the Eurasian ice-sheet complex to Late Weichselian climatic and oceanic forcing. *Quaternary Science Reviews* **153**: 97–121.
- Philipps W, Briner JP, Gislefoss L *et al.* 2017. Late Holocene glacier activity at inner Hornsund and Scottbreen, southern Svalbard. *Journal of Quaternary Science* **32**: 501–515.
- Rasmussen TL, Thomsen E, Ślubowska MA *et al.* 2007. Paleoceanographic evolution of the SW Svalbard margin (76 degrees N) since 20,000 ¹⁴C yr BP. *Quaternary Research* **67**: 100–114.
- Salvigsen O, Elgersma A. 1991. Radiocarbon Dated Raised Beaches in Northwestern Wedel Jarlsberg Land, Spitsbergen, Svalbard. *Wyprawy Geograficzne na Spitsbergen* 9–16.

- Schaefer JM, Denton GH, Kaplan M *et al.* 2009. High-frequency Holocene glacier fluctuations in New Zealand differ from the Northern signature. *Science* **324**: 622–625.
- Staiger J, Gosse J, Toracinta R et al. 2007. Atmospheric scaling of cosmogenic nuclide production: climate effect. Journal of Geophysical Research 112: B02205.
- Stokes CR, Tarasov L, Blomdin R *et al.* 2015. On the reconstruction of palaeo-ice sheets: recent advances and future challenges. *Quaternary Science Reviews* **125**: 15–49.
- Stone JO. 2000. Air pressure and cosmogenic isotope production. Journal of Geophysical Research: Solid Earth **105**: 23753–23759.
- Stuiver M, Reimer PJ, Reimer RW. 2018. CALIB 7.1. Available at http://calib.org, accessed (accessed 10 May 2018).
- Svendsen JI, Elverhmi A, Mangerud J. 1996. The retreat of the Barents Sea Ice Sheet on the western Svalbard margin. *Boreas* 25: 244–256.
- Svendsen JI, Mangerud J, Elverhøi A *et al.* 1992. The Late Weichselian glacial maximum on western Spitsbergen inferred from offshore sediment cores. *Marine Geology* **104**: 1–17.
- Ullman DJ, Carlson AE, LeGrande AN *et al.* 2015. Southern Laurentide ice-sheet retreat synchronous with rising boreal summer insolation. *Geology* **43**: 23–26.
- Young NE, Briner JP, Maurer J *et al.* 2016. ¹⁰Be measurements in bedrock constrain erosion beneath the Greenland Ice Sheet margin. *Geophysical Research Letters* **43**: 11,708–11,719.
- Young NE, Schaefer JM, Briner JP *et al.* 2013. A ¹⁰Be production-rate calibration for the Arctic. *Journal of Quaternary Science* **28**: 515–526.
- Young NE, Schaefer JM, Goehring BM *et al.* 2014. West Greenland and global *in situ* ¹⁴C production-rate calibrations. *Journal of Quaternary Science* **29**: 401–406.